4,034
Views
117
CrossRef citations to date
0
Altmetric
Review Articles

Current progress on the production, modification, and applications of bacterial cellulose

, , , , , ORCID Icon & ORCID Icon show all
Pages 397-414 | Received 21 Feb 2019, Accepted 29 Oct 2019, Published online: 14 Jan 2020
 

Abstract

Adoption of biomass for the development of biobased products has become a routine agenda in evolutionary metabolic engineering. Cellulose produced by bacteria is a “rising star” for this sustainable development. Unlike plant cellulose, bacterial cellulose (BC) shows several unique properties like a high degree of crystallinity, high purity, high water retention, high mechanical strength, and enhanced biocompatibility. Favored with those extraordinary properties, BC could serve as ideal biomass for the development of various industrial products. However, a low yield and the requirement for large growth media have been a persistent challenge in mass production of BC. A significant number of techniques has been developed in achieving efficient BC production. This includes the modification of bioreactors, fermentation parameters, and growth media. In this article, we summarize progress in metabolic engineering in order to solve BC growth limitation. This article emphasizes current engineered BC production by using various bioreactors, as well as highlighting the structure of BC fermented by different types of engineered-bioreactors. The comprehensive overview of the future applications of BC, aims to provide readers with insight into new economic opportunities of BC and their modifiable properties for various industrial applications. Modifications in chemical composition, structure, and genetic regulation, which preceded the advancement of BC applications, were also emphasized.

Disclosure statement

The authors declare that they do not have any conflict of interest.

Additional information

Funding

This project was supported by the Ministry of Science and Technology, Taiwan [MOST 106-2628-E-002-009-MY3].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 751.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.