4,034
Views
117
CrossRef citations to date
0
Altmetric
Review Articles

Current progress on the production, modification, and applications of bacterial cellulose

, , , , , ORCID Icon & ORCID Icon show all
Pages 397-414 | Received 21 Feb 2019, Accepted 29 Oct 2019, Published online: 14 Jan 2020

References

  • Rangaswamy BE, Vanitha KP, Hungund BS. Microbial cellulose production from bacteria isolated from rotten fruit. Int J Polym Sci. 2015;2015:1–8.
  • Kumbhar JV, Rajwade JM, Paknikar KM. Fruit peels support higher yield and superior quality bacterial cellulose production. Appl Microbiol Biotechnol. 2015;99(16):6677–6691.
  • Aydin YA, Aksoy ND. Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A. Appl Microbiol Biotechnol. 2014;98(3):1065–1075.
  • Moniri M, Boroumand Moghaddam A, Azizi S, et al. Production and status of bacterial cellulose in biomedical engineering. Nanomaterials (Basel). 2017;7(9):257.
  • Augimeri RV, Varley AJ, Strap JL. Establishing a role for bacterial cellulose in environmental interactions: lessons learned from diverse biofilm-producing proteobacteria. Front Microbiol. 2015;6:1282
  • Zeng M, Laromaine A, Roig A. Bacterial cellulose films: influence of bacterial strain and drying route on film properties. Cellulose. 2014;21(6):4455–4469.
  • Yin N, Santos TMA, Auer GK, et al. Bacterial cellulose as a substrate for microbial cell culture. Appl Environ Microbiol. 2014;80(6):1926–1932.
  • Liu M, Liu L, Jia S, et al. Complete genome analysis of Gluconacetobacter xylinus CGMCC 2955 for elucidating bacterial cellulose biosynthesis and metabolic regulation. Sci Rep. 2018;8(1):6266.
  • Wang S-S, Han Y-H, Ye Y-X, et al. Physicochemical characterization of high-quality bacterial cellulose produced by Komagataeibacter sp. strain W1 and identification of the associated genes in bacterial cellulose production. RSC Adv. 2017;7(71):45145–45155.
  • Svensson A, Nicklasson E, Harrah T, et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials. 2005;26(4):419–431.
  • Vergara BS, Idowu PMH, Sumangil JH. Nata de Coco – a Filipino delicacy. National Academy of Science and Technology. Metro Manila, Philippines: Island Publishing House, Philippines, Bicutan; 1999.
  • Rivas B, Moldes AB, Domínguez JM, et al. Development of culture media containing spent yeast cells of Debaryomyces hansenii and corn steep liquor for lactic acid production with Lactobacillus rhamnosus. Int J Biol Macromol. 2004;97(1):93–98.
  • Morgan JL, Strumillo J, Zimmer J. Crystallographic snapshot ofcellulose synthesis and membrane translocation. Nature. 2013;493(7431):181–186.
  • Ji K, Wang W, Zeng B, et al. Bacterial cellulose synthesis mechanism of facultative anaerob Enterobacter sp. FY-07. Sci Rep. 2016;6(1):21863.
  • Ruka DR, Simon GP, Dean KM. Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohyd Polym. 2012;89(2):613–622.
  • Indrianingsih AW, Rosyida VT, Jatmiko TH, et al. Preliminary study on biosynthesis and characterization of bacteria cellulose films from coconut water. IOP Conf Ser Earth Environ Sci. 2017;101:012010.
  • Cheng K-C, Catchmark JM, Demirci A. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng. 2009;3(1):12.
  • Tonouchi N, Tsuchida T, Yoshinaga F, et al. Characterization of the biosynthetic pathway of cellulose from glucose and fructose in Acetobacter xylinum. Biosci Biotech Biochem. 1996;60(8):1377–1379.
  • Hsieh J-T, Wang M-J, Lai J-T, et al. A novel static cultivation of bacterial cellulose production by intermittent feeding strategy. J Taiwan Inst Chem E. 2016;63:46–51.
  • Bae S, Shoda M. Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Prog. 2004;20(5):1366–1371.
  • Shezad O, Khan S, Khan T, et al. Production of bacterial cellulose in static conditions by a simple fed-batch cultivation strategy. Korean J Chem Eng. 2009;26(6):1689–1692.
  • Dubey S, Singh J, Singh RP. Biotransformation of sweet lime pulp waste into high-quality nanocellulose with an excellent productivity using Komagataeibacter europaeus SGP37 under static intermittent fed-batch cultivation. Bioresour Technol. 2018;247:73–80.
  • Matsutani M, Ito K, Azuma Y, et al. Adaptive mutation related to cellulose producibility in Komagataeibacter medellinensis (Gluconacetobacter xylinus) NBRC 3288. Appl Microbiol Biotechnol. 2015;99(17):7229–7240.
  • Singhsa P, Narain R, Manuspiya H. Physical structure variations of bacterial cellulose produced by different Komagataeibacter xylinus strains and carbon sources in static and agitated conditions. Cellulose. 2018;25(3):1571–1581.
  • Liu M, Zhong C, Wu X-Y, et al. Metabolomic profiling coupled with metabolic network reveals differences in Gluconacetobacter xylinus from static and agitated cultures. Biochem Eng J. 2015;101:85–98.
  • Reiniati I, Hrymak AN, Margaritis A. Kinetics of cell growth and crystalline nanocellulose production by Komagataeibacter xylinus. Biochem Eng J. 2017;127:21–31.
  • Lin S-P, Hsieh S-C, Chen K-I, et al. Semi-continuous bacterial cellulose production in a rotating disk bioreactor and its materials properties analysis. Cellulose. 2014;21(1):835–844.
  • Wu S-C, Li M-H. Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus. J Biosci Bioeng. 2015;120(4):444–449.
  • Fan X, Gao Y, He W, et al. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohydr Polym. 2016;151:1068–1072.
  • Lin D, Lopez-Sanchez P, Li R, et al. Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour Technol. 2014;151:113–119.
  • Çakar F, Özer I, Aytekin AÖ, et al. Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydr Polym. 2014;106:7–13.
  • Cavka A, Guo X, Tang S-J, et al. Production of bacterial cellulose and enzyme from waste fiber sludge. Biotechnol Biofuels. 2013;6(1):25.
  • Uzyol HK, Sacan MT. Bacterial cellulose production by Komagataeibacter hansenii using algae-based glucose. Environ Sci Pollut Res Int. 2017;24(12):11154–11162.
  • Jozala AF, Pértile RAN, dos Santos CA, et al. Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl Microbiol Biotechnol. 2015;99(3):1181–1190.
  • Wu J-M, Liu R-H. Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym. 2012;90(1):116–121.
  • Li Z, Wang L, Hua J, et al. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr Polym. 2015;120:115–119.
  • Huang C, Guo H-J, Xiong L, et al. Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym. 2016;136:198–202.
  • Mohite BV, Salunke BK, Patil SV. Enhanced production of bacterial cellulose by using Gluconacetobacter hansenii NCIM 2529 strain under shaking conditions. Appl Biochem Biotechnol. 2013;169(5):1497–1511.
  • Molina-Ramírez C, Castro M, Osorio M, et al. Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis. Materials. 2017;10(6):639.
  • Tsouko E, Kourmentza C, Ladakis D, et al. Bacterial cellulose production from industrial waste and by-product streams. Int J Mol Sci. 2015;16(12):14832–14849.
  • Lin S-P, Loira Calvar I, Catchmark JM, et al. Biosynthesis, production and applications of bacterial cellulose. Cellulose. 2013;20(5):2191–2219.
  • Urbina L, Hernández-Arriaga AM, Eceiza A, et al. By-products of the cider production: an alternative source of nutrients to produce bacterial cellulose. Cellulose. 2017;24(5):2071–2082.
  • Lin S-P, Huang Y-H, Hsu K-D, et al. Isolation and identification of cellulose-producing strain Komagataeibacter intermedius from fermented fruit juice. Carbohydr Polym. 2016;151:827–833.
  • Kuo C-H, Chen J-H, Liou B-K, et al. Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocoll. 2016;53:98–103.
  • Saichana N, Matsushita K, Adachi O, et al. Acetic acid bacteria: a group of bacteria with versatile biotechnological applications. Biotechnol Adv. 2015;33(6):1260–1271.
  • Liu M, Li S, Xie Y, et al. Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation. Appl Microbiol Biotechnol. 2018;102(3):1155–1165.
  • Castro C, Vesterinen A, Zuluaga R, et al. In situ production of nanocomposites of poly(vinyl alcohol) and cellulose nanofibrils from Gluconacetobacter bacteria: effect of chemical crosslinking. Cellulose. 2014;21(3):1745–1756.
  • Lin S-P, Liu C-T, Hsu K-D, et al. Production of bacterial cellulose with various additives in a PCS rotating disk bioreactor and its material property analysis. Cellulose. 2016;23(1):367–377.
  • Cacicedo ML, Castro MC, Servetas I, et al. Progress in bacterial cellulose matrices for biotechnological applications. Bioresour Technol. 2016;213:172–180.
  • Molina-Ramirez C, Enciso C, Torres-Taborda M, et al. Effects of alternative energy sources on bacterial cellulose characteristics produced by Komagataeibacter medellinensis. Int J Biol Macromol. 2018;117:735–741.
  • Keshk SM. Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus. Carbohydr Polym. 2014;99:98–100.
  • Augimeri RV, Strap JL. The phytohormone ethylene enhances cellulose production, regulates CRP/FNRKx transcription and causes differential gene expression within the bacterial cellulose synthesis operon of Komagataeibacter (Gluconacetobacter) xylinus ATCC 53582. Front Microbiol. 2015;6:1459.
  • Lee K-Y, Buldum G, Mantalaris A, et al. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci. 2014;14(1):10–32.
  • Song JE, Su J, Noro J, et al. Bio-coloration of bacterial cellulose assisted by immobilized laccase. AMB Expr. 2018;8(1):19.
  • Chao Y, Mitarai M, Sugano Y, et al. Effect of addition of watersoluble polysaccharides on bacterial cellulose production in a 50-L airlift reactor. Biotechnol Prog. 2001;17(4):781–785.
  • Cheng H-P, Wang P-M, Chen J-W, et al. Cultivation of Acetobacter xylinum for bacterial cellulose production in a modified airlift reactor. Biotechnol Appl Biochem. 2002;35(2):125–132.
  • Serafica G, Mormino R, Bungay H. Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol. 2002;58(6):756–760.
  • Zhang P, Chen L, Zhang Q, et al. Using in situ nanocellulose-coating technology based on dynamic bacterial cultures for upgrading conventional biomedical materials and reinforcing nanocellulose hydrogels. Biotechnol Progress. 2016;32(4):1077–1084.
  • Lu H, Jiang X. Structure and properties of bacterial cellulose produced using a trickling bed reactor. Appl Biochem Biotechnol. 2014;172(8):3844–3861.
  • Zabowoska M, Bodin A, Bäckdahl H, et al. Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater. 2010;6:2540–2547.
  • Naeem MA, Alfred M, Lv P, et al. Three-dimensional bacterial cellulose-electrospun membrane hybrid structures fabricated through in-situ self-assembly. Cellulose. 2018;25(12):6823–6830.
  • Hong F, Wei B, Chen L. Preliminary study on biosynthesis of bacterial nanocellulose tubes in a novel double-silicone-tube bioreactor for potential vascular prosthesis. BioMed Res Int. 2015;2015:1–9.
  • Igarashi K, Uchihashi T, Koivula A, et al. Visualization of cellobiohydrolase I from Trichoderma reesei moving on crystalline cellulose using high-speed atomic force microscopy. Methods Enzymol. 2012;510:169–182.
  • Ma T, Ji K, Wang W, et al. Cellulose synthesized by Enterobacter sp. FY-07 under aerobic and anaerobic conditions. Bioresour Technol. 2012;126:18–23.
  • Menchaca-Nal S, Londoño-Calderón CL, Cerrutti P, et al. Facile synthesis of cobalt ferrite nanotubes using bacterial nanocellulose as template. Carbohydr Polym. 2016;137:726–731.
  • Fijalkowski K, Żywicka A, Drozd R, et al. Increased water content in bacterial cellulose synthesized under rotating magnetic fields. Electromagn Biol Med. 2017;36(2):192–201.
  • Paximada P, Dimitrakopoulou EA, Tsouko E, et al. Structural modification of bacterial cellulose fibrils under ultrasonic irradiation. Carbohydr Polym. 2016;150:5–12.
  • Habibi Y. Key advances in the chemical modification of nanocelluloses. Chem Soc Rev. 2014;43(5):1519–1542.
  • Morales-Narváez E, Golmohammadi H, Naghdi T, et al. Nanopaper as an optical sensing platform. Acs Nano. 2015;9(7):7296–7305.
  • Wu C-N, Fuh S-C, Lin S-P, et al. TEMPO-oxidized bacterial cellulose pellicle with silver nanoparticles for wound dressing. Biomacromolecules. 2018;19(2):544–554.
  • Fernandes SCM, Sadocco P, Alonso-Varona A, et al. Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces. 2013;5(8):3290–3297.
  • Avila Ramirez JA, Gómez Hoyos C, Arroyo S, et al. Acetylation of bacterial cellulose catalyzed by citric acid: use of reaction conditions for tailoring the esterification extent. Carbohydr Polym. 2016;153:686–695.
  • Vasconcelos NF, Feitosa JPA, da Gama FMP, et al. Bacterial cellulose nanocrystals produced under different hydrolysis conditions: properties and morphological features. Carbohydr Polym. 2017;155:425–431.
  • Lopes TD, Riegel-Vidotti IC, Grein A, et al. Bacterial cellulose and hyaluronic acid hybrid membranes: production and characterization. Int J Biol Macromol. 2014;67:401–408.
  • Mohammadkazemi F, Faria M, Cordeiro N. In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: one-step process. Mater Sci Eng C. 2016;65:393–399.
  • Dehnad D, Mirzaei H, Emam-Djomeh Z, et al. Thermal and antimicrobial properties of chitosan–nanocellulose films for extending shelf life of ground meat. Carbohydr Polym. 2014;109:148–154.
  • Poonguzhali R, Khaleel Basha S, Sugantha Kumari V. Novel asymmetric chitosan/PVP/nanocellulose wound dressing: in vitro and in vivo evaluation. Int J Biol Macromol. 2018;112:1300–1309.
  • Foresti ML, Vazquez A, Boury B. Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: a review of recent advances. Carbohydr Polym. 2017;157:447–467.
  • Römling U, Galperin MY. Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functions. Trends Microbiol. 2015;23(9):545–557.
  • Urbina L, Guaresti O, Requies J, et al. Design of reusable novel membranes based on bacterial cellulose and chitosan for the filtration of copper in wastewaters. Carbohydr Polym. 2018;193:362–372.
  • Mangayil R, Rajala S, Pammo A, et al. Engineering and characterization of bacterial nanocellulose films as low cost and flexible sensor material. ACS Appl Mater Interfaces. 2017;9(22):19048–19056.
  • Abbasi-Moayed S, Golmohammadi H, Hormozi-Nezhad MR. A nanopaper-based artificial tongue: a ratiometric fluorescent sensor array on bacterial nanocellulose for chemical discrimination applications. Nanoscale. 2018;10(5):2492–2502.
  • Lamboni L, Li Y, Liu J, et al. Silk sericin-functionalized bacterial cellulose as a potential wound-healing biomaterial. Biomacromolecules. 2016;17(9):3076–3084.
  • Napavichayanun S, Amornsudthiwat P, Pienpinijtham P, et al. Interaction and effectiveness of antimicrobials along with healing-promoting agents in a novel biocellulose wound dressing. Mater Sci Eng C Mater Biol Appl. 2015;55:95–104.
  • Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265sr6–265sr6.
  • Sulaeva I, Henniges U, Rosenau T, et al. Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnol Adv. 2015;33(8):1547–1571.
  • Bajpai AK, Rajesh Kumar Saini JB, Agrawal P, et al. Wound-dressing implants. In Smart biomaterial devices: polymers in biomedical sciences. Boca Raton (FL): CRC Press; 2016. p. 106–113.
  • Abouhmad A, Mamo G, Dishisha T, et al. T4 lysozyme fused with cellulose-binding module for antimicrobial cellulosic wound dressing materials. J Appl Microbiol. 2016;121(1):115–125.
  • Rouabhia M, Asselin J, Tazi N, et al. Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin. ACS Appl Mater Interfaces. 2014;6(3):1439–1446.
  • Ataide JA, de Carvalho NM, Rebelo MDA, et al. Bacterial nanocellulose loaded with bromelain: assessment of antimicrobial, antioxidant and physical-chemical properties. Sci Rep. 2017;7(1):18031.
  • Zhang P, Chen L, Zhang Q, et al. Using in situ dynamic cultures to rapidly biofabricate fabric-reinforced composites of chitosan/bacterial nanocellulose for antibacterial wound dressings. Front Microbiol. 2016;7:260
  • Wiegand C, Moritz S, Hessler N, et al. Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine. J Mater Sci Mater Med. 2015;26(10):245.
  • Pourali P, Yahyaei B, Ajoudanifar H, et al. Impregnation of the bacterial cellulose membrane with biologically produced silver nanoparticles. Curr Microbiol. 2014;69(6):785–793.
  • Elayaraja S, Zagorsek K, Li F, et al. In situ synthesis of silver nanoparticles into TEMPO-mediated oxidized bacterial cellulose and their antivibriocidal activity against shrimp pathogens. Carbohydr Polym. 2017;166:329–337.
  • Moniri M, Boroumand Moghaddam A, Azizi S, et al. Molecular study of wound healing after using biosynthesized BNc/Fe3O4 nanocomposites assisted with a bioinformatics approach. Int J Nanomedicine. 2018;13:2955–2971.
  • Liu L-P, Yang X-N, Ye L, et al. Preparation and characterization of a photocatalytic antibacterial material: graphene oxide/TiO2/bacterial cellulose nanocomposite. Carbohydr Polym. 2017;174:1078–1086.
  • Abeer MM, Mohd Amin MCI, Martin C. A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol. 2014;66(8):1047–1061.
  • Pavaloiu R-D, Stoica A, Stroescu M, et al. Controlled release of amoxicillin from bacterial cellulose membranes. Cent Eur J Chem. 2014;12(9):962–967.
  • Shao W, Liu H, Wang S, et al. Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Carbohydr Polym. 2016;145:114–120.
  • Moritz S, Wiegand C, Wesarg F, et al. Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int J Pharm. 2014;471(1–2):45–55.
  • Alkhatib Y, Dewaldt M, Moritz S, et al. Controlled extended octenidine release from a bacterial nanocellulose/Poloxamer hybrid system. Eur J Pharm Biopharm. 2017;112:164–176.
  • Saïdi L, Vilela C, Oliveira H, et al. Poly (N-methacryloyl glycine)/nanocellulose composites as pH-sensitive systems for controlled release of diclofenac. Carbohydr Polym. 2017;169:357–365.
  • Huang L, Chen X, Nguyen TX, et al. Nano-cellulose 3D-networks as controlled-release drug carriers. J Mater Chem B. 2013;1(23):2976–2984.
  • Hoshi T, Yamazaki K, Sato Y, et al. Production of hollow-type spherical bacterial cellulose as a controlled release device by newly designed floating cultivation. Heliyon. 2018;4(10):e00873.
  • Feldmann E-M, Sundberg JF, Bobbili B, et al. Description of a novel approach to engineer cartilage with porous bacterial nanocellulose for reconstruction of a human auricle. J Biomater Appl. 2013;28(4):626–640.
  • Hannes Ahrem DP, Endres M, Conrad D, et al. Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants. Acta Biomater. 2014;10(3):1341–1353.
  • Martínez Ávila H, Feldmann E-M, Pleumeekers MM, et al. Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Biomaterials. 2015;44:122–133.
  • Sundberg J, Götherström C, Gatenholm P. Biosynthesis and in vitro evaluation of macroporous mineralized bacterial nanocellulose scaffolds for bone tissue engineering. Biomed Mater Eng. 2015;25(1):39–52.
  • Sybele Saska LNT, Moreira Spinola de Castro Raucci L, Scarel-Caminaga RM, et al. Nanocellulose-collagen-apatite composite associated with osteogenic growth peptide for bone regeneration. Int J Biol Macromol. 2017;103:467–476.
  • Keskin Z, Sendemir Urkmez A, Hames EE. Novel keratin modified bacterial cellulose nanocomposite production and characterization for skin tissue engineering. Mater Sci Eng C. 2017;75:1144–1153.
  • Krontiras P, Gatenholm P, Hägg DA. Adipogenic differentiation of stem cells in three-dimensional porous bacterial nanocellulose scaffolds. J Biomed Mater Res. 2015;103(1):195–203.
  • Reis EMD, Berti FV, Colla G, et al. Bacterial nanocellulose-IKVAV hydrogel matrix modulates melanoma tumor cell adhesion and proliferation and induces vasculogenic mimicry in vitro. J Biomed Mater Res. 2017;106(8):2741–2749.
  • Bottan S, Robotti F, Jayathissa P, et al. Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB). Acs Nano. 2015;9(1):206–219.
  • Leitao AF, Faria MA, Faustino AM, et al. A novel small-caliber bacterial cellulose vascular prosthesis: production, characterization, and preliminary in vivo testing. Macromol Biosci. 2016;16(1):139–150.
  • Weber C, Reinhardt S, Eghbalzadeh K, et al. Patency and in vivo compatibility of bacterial nanocellulose grafts as small-diameter vascular substitute. J Vasc Surg. 2018;68(6S):177S.e1–187S.e1.
  • Ullah H, Santos HA, Khan T. Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose. 2016;23(4):2291–2314.
  • Zhai X, Lin D, Liu D, et al. Emulsions stabilized by nanofibers from bacterial cellulose: new potential food-grade Pickering emulsions. Food Res Int. 2018;103:12–20.
  • Zhai X, Lin D, Zhao Y, et al. Bacterial cellulose relieves diphenoxylate-induced constipation in rats. J Agric Food Chem. 2018;66(16):4106–4117.
  • Khorasani AC, Shojaosadati SA. Bacterial nanocellulose-pectin bionanocomposites as prebiotics against drying and gastrointestinal condition. Int J Biol Macromol. 2016;83:9–18.
  • Sheldon RA, van Pelt S. Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev. 2013;42(15):6223–6235.
  • Cai Q, Hu C, Yang N, et al. Enhanced activity and stability of industrial lipases immobilized onto spherelike bacterial cellulose. Int J Biol Macromol. 2018;109:1174–1181.
  • Kim JH, Park S, Kim H, et al. Alginate/bacterial cellulose nanocomposite beads prepared using Gluconacetobacter xylinus and their application in lipase immobilization. Carbohydr Polym. 2017;157:137–145.
  • Yuan H, Chen L, Hong FF, et al. Evaluation of nanocellulose carriers produced by four different bacterial strains for laccase immobilization. Carbohydr Polym. 2018;196:457–464.
  • Sampaio LMP, Padrão J, Faria J, et al. Laccase immobilization on bacterial nanocellulose membranes: antimicrobial, kinetic and stability properties. Carbohydr Polym. 2016;145:1–12.
  • Drozd R, Rakoczy R, Wasak A, et al. The application of magnetically modified bacterial cellulose for immobilization of laccase. Int J Biol Macromol. 2018;108:462–470.
  • Estevinho BN, Samaniego N, Talens-Perales D, et al. Development of enzymatically-active bacterial cellulose membranes through stable immobilization of an engineered beta-galactosidase. Int J Biol Macromol. 2018;115:476–482.
  • Zywicka A, Peitler D, Rakoczy R, et al. Wet and dry forms of bacterial cellulose synthetized by different strains of Gluconacetobacter xylinus as carriers for yeast immobilization. Appl Biochem Biotechnol. 2016;180(4):805–816.
  • Fang Q, Zhou X, Deng W, et al. Freestanding bacterial cellulose-graphene oxide composite membranes with high mechanical strength for selective ion permeation. Sci Rep. 2016;6(1):33185.
  • Xu T, Jiang Q, Ghim D, et al. Catalytically active bacterial nanocellulose-based ultrafiltration membrane. Small. 2018;14(15):e1704006.
  • Park M, Lee D, Shin S, et al. Flexible conductive nanocellulose combined with silicon nanoparticles and polyaniline. Carbohydr Polym. 2016;140:43–50.
  • Abbasi-Moayed S, Golmohammadi H, Bigdeli A, et al. A rainbow ratiometric fluorescent sensor array on bacterial nanocellulose for visual discrimination of biothiols. Analyst. 2018;143(14):3415–3424.
  • Wei H, Rodriguez K, Renneckar S, et al. Preparation and evaluation of nanocellulose-gold nanoparticle nanocomposites for SERS applications. Analyst. 2015;140(16):5640–5649.
  • Wei H, Vikesland PJ. pH-Triggered molecular alignment for reproducible SERS detection via an AuNP/nanocellulose platform. Sci Rep. 2015;5(1)
  • Jang WD, Hwang JH, Kim HU, et al. Bacterial cellulose as an example product for sustainable production and consumption. Microb Biotechnol. 2017;10(5):1181–1185.
  • Balat M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energ Convers Manage. 2011;52(2):858–875.
  • Silva NHCS, Drumond I, Almeida IF, et al. Topical caffeine delivery using biocellulose membranes: a potential innovative system for cellulite treatment. Cellulose. 2014;21(1):665–674.
  • Montrikittiphant T, Tang M, Lee K-Y, et al. Bacterial cellulose nanopaper as reinforcement for polylactide composites: renewable thermoplastic NanoPaPreg. Macromol Rapid Commun. 2014;35(19):1640–1645.
  • Tabarsa T, Sheykhnazari S, Ashori A, et al. Preparation and characterization of reinforced papers using nano bacterial cellulose. Int J Biol Macromol. 2017;101:334–340.
  • Fillat A, Martínez J, Valls C, et al. Bacterial cellulose for increasing barrier properties of paper products. Cellulose. 2018;25(10):6093–6105.
  • Pircher N, Veigel S, Aigner N, et al. Reinforcement of bacterial cellulose aerogels with biocompatible polymers. Carbohyd Polym. 2014;111:505–513.
  • Schutt BD, Serrano B, Cerro RL, et al. Production of chemicals from cellulose and biomass-derived compounds through catalytic sub-critical water oxidation in a monolith reactor. Biomass Bioenerg. 2002;22(5):363–375.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.