252
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Rutaretin1′-(6″-sinapoylglucoside): promising inhibitor of COVID 19 mpro catalytic dyad from the leaves of Pittosporum dasycaulon miq (Pittosporaceae)

, , , &
Pages 12557-12573 | Received 24 May 2021, Accepted 21 Aug 2021, Published online: 16 Sep 2021
 

Abstract

SARS CoV2 is a novel strain of coronavirus, first reported in Wuhan of China, in 2019 and drugs specific to COVID-19 treatment are still lacking. The main protease (3CL) present in the new coronavirus strain is considered a potential drug target due to its role in viral replications. The plant Pittosporum dasycaulon Miq. is a medicinal plant reported to have prominent antimicrobial including antibacterial and antifungal activity. In this study, 12 natural compounds were selected on the basis of major peaks observed in the LC-HRMS analysis of P. dasycaulon aqueous leaves extract (AQLE). The pharmacological properties of the selected compounds against 3CLpro were investigated through in silico studies along with the standard antiviral drugs Lopinavir and Nelfinavir. The molecular docking study was done using Autodock 4.2 tool and visualized using Pymol (1.7.4.5 Edu). The docking analysis revealed that three compounds showed a better binding affinity than the standard drug Lopinavir. To validate the docking interactions, behaviour and stability of protein- ligand complex, molecular dynamics (100 ns) simulations were performed with the four best-ranked bioactive compounds identified through molecular docking analysis namely; Leptinidine, Rutaretin1′-(6″-sinapoylglucoside), Kalambroside A, and 5,7-dimethoxy', 4’methylenedioxyflavanone. The stability of the docking conformation was studied in depth by calculating the binding free energy using MM-PBSA method. Our findings on molecular docking, MD simulations and binding energy calculations suggest that Rutaretin1'-(6''-sinapoylglucoside) could be a potential inhibitor of COVID-19 3CLpro. However, considering the current pandemic situation of COVID-19, further research is required to experimentally validate their potential medicinal use against COVID-19 3CLpro both in vitro and in vivo along with clinical practices.

Communicated by Ramaswamy H. Sarma

Disclosure statement

The authors state no conflict of interest.

Additional information

Funding

The author is thankful to Council of Scientific and Industrial Research (CSIR), New Delhi, for providing financial assistance (File no: 09/102(0254)/2019-EME-1).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.