252
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Rutaretin1′-(6″-sinapoylglucoside): promising inhibitor of COVID 19 mpro catalytic dyad from the leaves of Pittosporum dasycaulon miq (Pittosporaceae)

, , , &
Pages 12557-12573 | Received 24 May 2021, Accepted 21 Aug 2021, Published online: 16 Sep 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., & Hilgenfeld, R. (2003). Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science (New York, NY), 300(5626), 1763–1767. 2003). https://doi.org/10.1126/science.1085658
  • Bacha, U., Barrila, J., Velazquez-Campoy, A., Leavitt, S. A., & Freire, E. (2004). Identification of novel inhibitors of the SARS coronavirus main protease 3CLpro. Biochemistry, 43(17), 4906–4912. https://doi.org/10.1021/bi0361766
  • Báez-Santos, Y. M., St. John, S. E., & Mesecar, A. D. (2015). The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antiviral Research, 115(December), 21–38. https://doi.org/10.1016/j.antiviral.2014.12.015
  • Barot, K. P., Jain, S. V., Kremer, L., Singh, S., & Ghate, M. D. (2015). Recent advances and therapeutic journey of coumarins: Current status and perspectives. Medicinal Chemistry Research, 24(7), 2771–2798. https://doi.org/10.1007/s00044-015-1350-8
  • Benet, L. Z., Hosey, C. M., Ursu, O., & Oprea, T. I. (2016). BDDCS, the Rule of 5 and drugability. Advanced Drug Delivery Reviews, 101, 89–98. https://doi.org/10.1016/j.addr.2016.05.007
  • Berman, H. M., Bluhm, W. F., Philip, E., Marvin, J., Weissig, H., & John, D. (2002). Research papers The Protein Data Bank research papers. Acta Crystallographica, D58, 899–907.
  • Bhal, S. K., Kassam, K., Peirson, I. G., & Pearl, G. M. (2007). The rule of five revisited: Applying log D in place of log P in drug-likeness filters. Molecular Pharmaceutics, 4(4), 556–560. https://doi.org/10.1021/mp0700209
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. Journal of Chemical Physics, 126(1) https://doi.org/10.1063/1.2408420
  • Campling, B. G., Pym, J., Baker, H. M., Cole, S. P. C., & Lam, Y. M. (1991). Chemosensitivity testing of small cell lung cancer using the mtt assay. British Journal of Cancer, 63(1), 75–83. https://doi.org/10.1038/bjc.1991.16
  • Chan, J. F., Kok, K., Zhu, Z., Chu, H., Kai-Wang, K., Yuan, S., & Yuen, K. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections, 9(1), 221–236. https://doi.org/10.1080/22221751.2020.1719902
  • Chandel, V., Raj, S., & Rathi, B., K. D. (2020). Approved antiviral compounds and active phytochemicals through molecular docking. A Drug Repurposing Approach, 7(3), 1–10. https://doi.org/10.20944/preprints202003.0349.v1
  • Cunha, C. B., & Opal, S. M. (2014). Middle east respiratory syndrome (MERS): A new zoonotic viral pneumonia. Virulence, 5(6), 650–654. https://doi.org/10.4161/viru.32077
  • De Oliveira Costa, A. C., Fernandes, J. M., Da Silva Negreiros Neto, T., Mendonça, J. N., Tomaz, J. C., Lopes, N. P., Soares, L. A. L., & Zucolotto, S. M. (2015). Quantification of chemical marker of Kalanchoe brasiliensis (crassulaceae) leaves by HPLC-DAD. Journal of Liquid Chromatography & Related Technologies, 38(7), 795–800. https://doi.org/10.1080/10826076.2014.971370
  • Dhama, K., Khan, S., Tiwari, R., Sircar, S., Bhat, S., Malik, Y. S., Singh, K. P., Chaicumpa, W., & B.-A, D. (2020). Crossm. Clinical Microbilogy Reviews, 33(4), 1–48.
  • Dong, S., Sun, J., Mao, Z., Wang, L., Lu, Y. L., & Li, J. (2020). A guideline for homology modeling of the proteins from newly discovered betacoronavirus, 2019 novel coronavirus (2019-nCoV). Journal of Medical Virology, 92(9), 1542–1548. https://doi.org/10.1002/jmv.25768
  • Eby, T. L., Arteaga, A. A., & Spankovich, C. (2020). Otologic and audiologic considerations for COVID-19. Otolaryngology-Head and Neck Surgery : Official Journal of American Academy of Otolaryngology-Head and Neck Surgery, 163(1), 110–111. https://doi.org/10.1177/0194599820928989
  • Fielding, B. C., da Silva Maia Bezerra Filho, C., Ismail, N. S. M., & Sousa, D. P. d. (2020). Alkaloids: Therapeutic potential against human coronaviruses. Molecules (Basel, Switzerland), 25(23), 1–17. https://doi.org/10.3390/molecules25235496
  • Florindo, H. F., Kleiner, R., Vaskovich-Koubi, D., Acúrcio, R. C., Carreira, B., Yeini, E., Tiram, G., Liubomirski, Y., & Satchi-Fainaro, R. (2020). Immune-mediated approaches against COVID-19. Nature Nanotechnology, 15(8), 630–645. https://doi.org/10.1038/s41565-020-0732-3
  • Frediansyah, A., Tiwari, R., Sharun, K., Dhama, K., & Harapan, H. (2021). Antivirals for COVID-19: A critical review. Clinical Epidemiology and Global Health, 9(July), 90–98. https://doi.org/10.1016/j.cegh.2020.07.006
  • Ghanbari, B. (2020). On forecasting the spread of the COVID-19 in Iran: The second wave. Chaos, Solitons, and Fractals, 140(2020), 110176–110178. https://doi.org/10.1016/j.chaos.2020.110176
  • Guan, L., Yang, H., Cai, Y., Sun, L., Di, P., Li, W., Liu, G., & Tang, Y. (2019). ADMET-score - a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 10(1), 148–157. https://doi.org/10.1039/c8md00472b
  • Guastalegname, M., & Vallone, A. (2020). Could chloroquine/hydroxychloroquine be harmful in coronavirus disease 2019 (COVID19) treatment? Clinical Infectious Diseases, 71(15), 888–889. https://doi.org/10.1093/cid/ciaa320
  • Hajighasemi, F., & Mirshafiey, A. (2010). Propranolol effect on proliferation and vascular endothelial growth factor secretion in human immunocompetent cells. Journal of Clinical Immunology and Immunopathology Research, 2(2), 22–27.
  • Hoda, S., Gupta, L., Agarwal, H., Raj, G., Vermani, M., & Vijayaraghavan, P. (2019). Inhibition of Aspergillus fumigatus biofilm and cytotoxicity study of natural compound Cis-9-Hexadecenal. Journal of Pure and Applied Microbiology, 13(2), 1207–1216. https://doi.org/10.22207/JPAM.13.2.61
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Jo, S., Kim, H., Kim, S., Shin, D. H., & Kim, M. S. (2019). Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors. Chemical Biology & Drug Design, 94(6), 2023–2030. https://doi.org/10.1111/cbdd.13604
  • Jo, S., Kim, S., Shin, D. H., & Kim, M. S. (2020). Inhibition of SARS-CoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 145–151. https://doi.org/10.1080/14756366.2019.1690480
  • Joshi, T., Joshi, T., Sharma, P., Mathpal, S., Pundir, H., Bhatt, V., & Chandra, S. (2020). In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. European Review for Medical and Pharmacological Sciences, 24(8), 4529–4536.https://doi.org/10.26355/eurrev_202004_21036
  • Kalanchoe, F. (1994). Patuletin acetylrhamnosides. Journal of Natural Products, 57(11), 1503–1510.
  • Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2015). PubChem substance and compound databases. Nuclic Acid Reasearch, 1, 1–12. https://doi.org/10.1093/nar/gkv951
  • Kitazato, K., Wang, Y., & Kobayashi, N. (2007). Viral infectious disease and natural products with antiviral activity. Drug Discoveries & Therapeutics, 1(1), 14–22. http://www.ncbi.nlm.nih.gov/pubmed/22504360
  • Kumbhar, S. T., Patil, S. P., & Une, H. D. (2018). Phytochemical analysis of Canna indica L. roots and rhizomes extract. Biochemistry and Biophysics Reports, 16(September), 50–55. https://doi.org/10.1016/j.bbrep.2018.09.002
  • Lawso, D. R., Green, T. P., Haynes, L. R. W., & Raymond Miller, A. (1997). Nuclear magnetic resonance spectroscopy and mass spectrometry of solanidine, leptinidine, and acetylleptinidine. Steroidal alkaloids from Solanum chacoense bitter. Journal of Agricultural and Food Chemistry, 45(10), 4122–4126. https://doi.org/10.1021/jf9702914
  • Lee, P. I., & Hsueh, P. R. (2020). Emerging threats from zoonotic coronaviruses-from SARS and MERS to 2019-nCoV. Journal of Microbiology, Immunology, and Infection = Wei Mian yu Gan Ran za Zhi, 53(3), 365–367. https://doi.org/10.1016/j.jmii.2020.02.001
  • Lindahl, E., Bjelkmar, P., Larsson, P., Cuendet, M. A., & Hess, B. (2010). Implementation of the charmm force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. Journal of Chemical Theory and Computation, 6(2), 459–466. https://doi.org/10.1021/ct900549r
  • Liu, J., Cao, R., Xu, M., Wang, X., Zhang, H., Hu, H., Li, Y., Hu, Z., Zhong, W., & Wang, M. (2020). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery, 6(1), 16–19. https://doi.org/10.1038/s41421-020-0156-0
  • Liu, X., Zhang, B., Jin, Z., & Yang, H., R. Z. (2020). The crystal structure of COVID-19 main protease in complex with an inhibitor N3. Protein DataBank. https://doi.org/10.2210/pdb6lu7/pdb
  • Liu, X., & Wang, X. J. (2020). Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. Journal of Genetics and Genomics = Yi Chuan Xue Bao, 47(2), 119–121. https://doi.org/10.1016/j.jgg.2020.02.001
  • Malabadi, R. B. (2021). Role of herbal medicine for controlling coronavirus (SARS-CoV-2) disease (COVID-19). International Journal of Research and Scientific Innovation (IJRSI), 8(2), 135–165.
  • Mirza, M. U., & Froeyen, M. (2020). Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. Journal of Pharmaceutical Analysis, 10(4), 320–328. https://doi.org/10.1016/j.jpha.2020.04.008
  • Omrani, A. S., Saad, M. M., Baig, K., Bahloul, A., Abdul-Matin, M., Alaidaroos, A. Y., Almakhlafi, G. A., Albarrak, M. M., Memish, Z. A., & Albarrak, A. M. (2014). Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: A retrospective cohort study. The Lancet. Infectious Diseases, 14(11), 1090–1095. https://doi.org/10.1016/S1473-3099(14)70920-X
  • Owa, A. B., & Owa, O. T. (2020). Lopinavir/ritonavir use in Covid-19 infection: Is it completely non-beneficial? Journal of Microbiology, Immunology, and Infection = Wei Mian yu Gan Ran za Zhi, 53(5), 674–675. https://doi.org/10.1016/j.jmii.2020.05.014
  • Pathak, K., & Raghuvanshi, S. (2015). Oral bioavailability: Issues and solutions via nanoformulations. Clinical Pharmacokinetics, 54(4), 325–357. https://doi.org/10.1007/s40262-015-0242-x
  • Pathak, N., Chen, Y. T., Hsu, Y. C., Hsu, N. Y., Kuo, C. J., Tsai, H. P., Kang, J. J., Huang, C. H., Chang, S. Y., Chang, Y. H., Liang, P. H., & Yang, J. M. (2021). Uncovering flexible active site conformations of SARS-CoV-2 3CL proteases through protease pharmacophore clusters and COVID-19 drug repurposing. ACS Nano, 15(1), 857–872. https://doi.org/10.1021/acsnano.0c07383
  • Peretto, G., Sala, S., & Caforio, A. L. P. (2020). Acute myocardial injury, MINOCA, or myocarditis? Improving characterization of coronavirus-associated myocardial involvement. European Heart Journal, 41(22), 2124–2125. https://doi.org/10.1093/eurheartj/ehaa396
  • Puttaswamy, H., Gowtham, H. G., Ojha, M. D., Yadav, A., Choudhir, G., Raguraman, V., Kongkham, B., Selvaraju, K., Shareef, S., Gehlot, P., Ahamed, F., & Chauhan, L. (2020). In silico studies evidenced the role of structurally diverse plant secondary metabolites in reducing SARS-CoV-2 pathogenesis. Scientific Reports, 10(1), 20524–20584. https://doi.org/10.1038/s41598-020-77602-0
  • Shah, B., Modi, P., & Sagar, S. R. (2020). In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sciences, 252(April), 117652. https://doi.org/10.1016/j.lfs.2020.117652
  • Sheng, Y. J., Yin, Y. W., Ma, Y. Q., & Ding, H. M. (2021). Improving the performance of MM/PBSA in protein-protein interactions via the screening electrostatic energy. Journal of Chemical Information and Modeling, 61(5), 2454–2462. https://doi.org/10.1021/acs.jcim.1c00410
  • Silveira, D., Prieto-Garcia, J. M., Boylan, F., Estrada, O., Fonseca-Bazzo, Y. M., Jamal, C. M., Magalhães, P. O., Pereira, E. O., Tomczyk, M., & Heinrich, M. (2020). COVID-19: Is there evidence for the use of herbal medicines as adjuvant symptomatic therapy? Frontiers in Pharmacology, 11, 581840. https://doi.org/10.3389/fphar.2020.581840
  • Sjögren, E., Westergren, J., Grant, I., Hanisch, G., Lindfors, L., Lennernäs, H., Abrahamsson, B., & Tannergren, C. (2013). In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: Application of the mechanistic absorption model GI-Sim. European Journal of Pharmaceutical Sciences, 49(4), 679–698. https://doi.org/10.1016/j.ejps.2013.05.019
  • Steenkamp, V., & Gouws, M. C. (2006). Cytotoxicity of six South African medicinal plant extracts used in the treatment of cancer. South African Journal of Botany, 72(4), 630–633. https://doi.org/10.1016/j.sajb.2006.02.004
  • Thawabteh, A., Juma, S., Bader, M., Karaman, D., Scrano, L., Bufo, S. A., & Karaman, R. (2019). The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins, 11(11), 1–28. https://doi.org/10.3390/toxins11110656
  • Thorne, H. V., Clarke, G. F., & Skuce, R. (1985). The inactivation of herpes simplex virus by some Solanaceae glycoalkaloids. Antiviral Research, 5(6), 335–343. https://doi.org/10.1016/0166-3542(85)90003-8
  • Topçu, G., Şenol, H., Alim Toraman, G. Ö., & Altan, V. M. (2020). Natural alkaloids as potential anti-coronavirus compounds. Bezmialem Science, 8(3), 131–139. https://doi.org/10.14235/bas.galenos.2020.5035
  • Wang, F., Chen, C., Tan, W., Yang, K., & Yang, H. (2016). Structure of main protease from human coronavirus NL63: Insights for wide spectrum anti-coronavirus drug design. Scientific Reports, 6(March), 22612–22677. https://doi.org/10.1038/srep22677
  • Xue, X., Yu, H., Yang, H., Xue, F., Wu, Z., Shen, W., Li, J., Zhou, Z., Ding, Y., Zhao, Q., Zhang, X. C., Liao, M., Bartlam, M., & Rao, Z. (2008). Structures of two coronavirus main proteases: Implications for substrate binding and antiviral drug design. Journal of Virology, 82(5), 2515–2527. https://doi.org/10.1128/JVI.02114-07
  • Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R., & Rao, Z. (2003). The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13190–13195. https://doi.org/10.1073/pnas.1835675100
  • Yousefi, H., Mashouri, L., Okpechi, S. C., Alahari, N., & Alahari, S. K. (2021). Repurposing existing drugs for the treatment of COVID-19/SARS-CoV-2 infection: A review describing drug mechanisms of action. Biochemical Pharmacology, 183(183), 114294–114296. https://doi.org/10.1016/j.bcp.2020.114296
  • Yuce, M., Cicek, E., Inan, T., Dag, A. B., Kurkcuoglu, O., & Sungur, F. A. (2021). Repurposing of FDA‐approved drugs against active site and potential allosteric drug binding sites of COVID ‐19 main protease. Proteins: Structure, Function, and Bioinformatics, 89(6), 1–17. https://doi.org/10.1002/prot.26164

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.