214
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Molecular dynamics and absolute binding free energy studies of piperine derivatives as potential inhibitors of SARS-CoV-2 main protease

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 13696-13706 | Received 30 Sep 2022, Accepted 12 Feb 2023, Published online: 30 Mar 2023
 

Abstract

The work presents a library of piperine derivatives as potential inhibitors of the main protease protein (Mpro) functionality using Docking Studies, Molecular Dynamics (MD) Simulations and Absolute Binding Free-Energy calculations. 342 ligands were selected for this work and docked with Mpro protein. Among all the ligands studied, PIPC270, PIPC299, PIPC252, PIPC63, PIPC311 were the top five docked conformations having significant hydrogen bonding and hydrophobic interactions inside the active pocket of Mpro. These top five ligands were subjected to MD simulations for 100 ns using GROMACS. Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of Gyration (Rg), Solvent Accessible Surface Area (SASA) and hydrogen bond analysis revealed that the ligands bounded to protein remain stable without significant deviations during the course of MD simulations. Absolute binding free energy (ΔGb) was calculated for theses complexes and found that the ligand PIPC299 shows the prevalent binding affinity with binding free-energy of about −113.05 Kcal/mol. Thus, these molecules can be further tested by in vitro and in vivo studies on Mpro. This study lays a path to explore the new functionality of piperine derivatives as novel drug like molecules.

Communicated by Ramaswamy H. Sarma

Acknowledgement

The authors take the opportunity to thank Management of Gayatri Vidya Parishad College for Degree and PG Courses (A) for funding to purchase workstation.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.