216
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Molecular dynamics and absolute binding free energy studies of piperine derivatives as potential inhibitors of SARS-CoV-2 main protease

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 13696-13706 | Received 30 Sep 2022, Accepted 12 Feb 2023, Published online: 30 Mar 2023

References

  • Aldeghi, M., Bluck, J. P., & Biggin, P. C. (2018). Absolute alchemical free energy calculations for ligand binding: A beginner’s guide Computational Drug discovery and Design Methods in Molecular Biology, 1762, (pp. 199–232). https://doi.org/10.1007/978-1-4939-7756-7_11
  • Ali, Y., Alam, M. S., Hamid, H., Husain, A., Bano, S., Dhulap, A., Kharbanda, C., Nazreen, S., & Haider, S. (2015). Design, synthesis and biological evaluation of piperic acid triazolyl derivatives as potent anti-inflammatory agents. European Journal of Medicinal Chemistry, 92, 490–500. https://doi.org/10.1016/j.ejmech.2015.01.001
  • Amperayani, K. R., Kumar, K. N., & Parimi, U. D. (2018). Synthesis and in vitro and in silico antimicrobial studies of novel piperine–pyridine analogs. Research on Chemical Intermediates, 44(5), 3549–3564. https://doi.org/10.1007/s11164-018-3324-1
  • Amperayani, K. R., & Parimi, U. D. (2019). Synthesis, in vitro and in silico anti-proliferative studies of novel piperiene-oxadiazole and thiadiazole analogs. Russian Journal of General Chemistry, 89(11), 2301–2307. https://doi.org/10.1134/S1070363219110227
  • Andrés, E., Högestätt, E. D., Sterner, O., Echeverri, F., & Zygmunt, P. M. (2010). In vitro TRPV1 activity of piperine derived amides. Bioorganic & Medicinal Chemistry, 18(9), 3299–3306. https://doi.org/10.1016/j.bmc.2010.03.013
  • Borkotoky, S., & Banerjee, M. (2021). A computational prediction of SARS-CoV-2 structural protein inhibitors from Azadirachta indica (Neem). Journal of Biomolecular Structure and Dynamics, 39(11), 4111–4121. https://doi.org/10.1080/07391102.2020.1774419
  • Carlos, R., Mota, T., Sousa, S., Karla, D., Silva, F., Mangeon, T., Lisboa, H., Fragoso, R., Cavalcanti, P., Carvalho, F., Mendes, V., Kélvia, T., Sousa, G. d., Albuquerque, R., Abrantes, D., Oliveira, E., Athayde-Filho, P. F. d., Cláudia, M., Brandão, R., … Vieira, M. (2020). A novel piperine analogue exerts in vivo antitumor effect by inducing oxidative, antiangiogenic and immunomodulatory actions. Biomedicine & Pharmacotherapy, 128, 110247. https://doi.org/10.1016/j.biopha.2020.110247
  • Chavarria, D., Fernandes, C., Silva, V., Silva, C., Gil-Martins, E., Silva, T., Silva, R., Remião, F., & Oliveira, P. J. (2019). Design of novel monoamine oxidase-B inhibitors based on piperine scaffold: Structure-activity-toxicity, drug-likeness and efflux transport studies. European Journal of Medicinal Chemistry, 185(111770), 1–8. https://doi.org/10.1016/j.ejmech.2019.111770
  • Choochana, P., Moungjaroen, J., Jongkon, N., & Gritsanapan, W. (2015). Development of piperic acid derivatives from Piper nigrum as UV protection agents. Pharm Biol, 53(4), 477–482. https://doi.org/10.3109/13880209.2014.924020
  • Demuner, J., Paula, F. d., & Barbosa, L. C. D. A. (2000). Synthesis and insecticidal activity of new amide derivatives of piperine †. Pest Management Science, 56(2), 168–174. https://doi.org/10.1002/(SICI)1526-4998(200002)56:2<168::AID-PS110>3.0.CO;2-H
  • Fakhar, Z., Faramarzi, B., Pacifico, S., & Faramarzi, S. (2021). Anthocyanin derivatives as potent inhibitors of SARS-CoV-2 main protease: An in-silico perspective of therapeutic targets against COVID-19 pandemic. Journal of Biomolecular Structure and Dynamics, 39(16), 6171–6183. https://doi.org/10.1080/07391102.2020.1801510
  • Franklim, T. N., Freire-de-Lima, L., Nazareth, J. d., Diniz, S., Previato, J. O., Castro, R. N., Mendonça-Previato, L., Edilson, M., & Lima, F. d (2013). Design, synthesis and trypanocidal evaluation of novel 1,2,4-triazoles-3-thiones derived from natural piperine. Molecules (Basel, Switzerland), 18(6), 6366–6382. https://doi.org/10.3390/molecules18066366
  • Fridlender, M., Kapulnik, Y., & Koltai, H. (2015). Plant derived substances with anti-cancer activity: from folklore to practice. Frontiers in Plant Science, 6(799), 1–9. https://doi.org/10.3389/fpls.2015.00799
  • Hanna Wójtowicz-Rajchela*, M. K. (2020). Chemo-, Regio-, and Stereoselectivity in 1,3-Dipolar cycloaddition of piperine with nitrones. A cycloadditive route to aminoalcohols. New Journal of Chemistry, 44, 6015–6025. https://doi.org/10.1039/C9NJ06442G
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Koul, S., Koul, J. L., Taneja, S. C., Dhar, K. L., Jamwal, D. S., Singh, K., Reen, K., & Singh, J. (2000). Structure ± activity relationship of piperine and its synthetic analogues for their inhibitory potentials of rat hepatic microsomal constitutive and inducible cytochrome P450 activities. Bioorganic Medicinal Chemistry, 8(1), 251-268. https://doi.org/10.1016/s0968-0896(99)00273-4.
  • Krchn, V., Waring, K. R., Noll, B. C., Moellmann, U., Dahse, H., & Miller, M. J. (2008). Evolution of natural product scaffolds by acyl- and arylnitroso hetero-diels - alder reactions: new chemistry on piperine. Journal of Organic Chemistry, 73(12), 4559–4567. https://doi.org/10.1021/jo8004827
  • Kumar, K. N., Amperayani, K. R., Ummdi, V. R. S., & Parimi, U. D. (2019). Synthesis and antimicrobial activity of piperine analogues containing 1,2,4-triazole ring. Asian Journal of Chemistry, 31(5), 1077–1080. https://doi.org/10.14233/ajchem.2019.21876
  • Lv, M., & Xu, H. (2018). Agricultural and environmental chemistry synthesis of piperine analogs containing isoxazoline/pyrazoline scaffold and their pesticidal bioactivities synthesis of piperine.Journal of Agricultural Food Chemistry,66(43), 11254–11264. https://doi.org/10.1021/acs.jafc.8b03690
  • Martins, M., do Nascimento, G. M., Nooruzzaman, M., Yuan, F., Chen, C., Caserta, L. C., Miller, A. D., Whittaker, G. R., Fang, Y., & Diel, D. G. (2022). The Omicron variant BA.1.1 presents a lower pathogenicity than B.1 D614G and Delta variants in a feline model of SARS-CoV-2 infection. Journal of Virology, 96(17), 1–19. https://doi.org/10.1128/jvi.00961-22
  • Mishra, S., Narain, U., Mishra, R., & Misra, K. (2005). Design, development and synthesis of mixed bioconjugates of piperic acid-glycine, curcumin-glycine/alanine and curcumin-glycine-piperic acid and their antibacterial and antifungal properties. Bioorganic and Medicinal Chemistry, 13(5), 1477–1486. https://doi.org/10.1016/j.bmc.2004.12.057
  • Mrityunjaya, M., Pavithra, V., Neelam, R., Janhavi, P., Halami, P. M., & Ravindra, P. v (2020). Immune-boosting, antioxidant and anti-inflammatory food supplements targeting pathogenesis of COVID-19. Frontiers in Immunology, 11(570122), 1–12. https://doi.org/10.3389/fimmu.2020.570122
  • Naidoo, A., Naidoo, K., McIlleron, H., Essack, S., & Padayatchi, N. (2017). A review of moxifloxacin for the treatment of drug-susceptible tuberculosis. The Journal of Clinical Pharmacology, 57(11), 1369–1386. https://doi.org/10.1002/jcph.968
  • Nargotra, A., Sharma, S., Koul, J. L., Sangwan, P. L., Khan, I. A., Kumar, A., Taneja, S. C., & Koul, S. (2009). Quantitative structure activity relationship (QSAR) of piperine analogsfor bacterial NorA efflux pump inhibitors. European Journal of Medicinal Chemistry, 44(10), 4128–4135. https://doi.org/10.1016/j.ejmech.2009.05.004
  • Pal, I., Kumar, S., Kaur, A., Singh, S., Kumar, R., Garg, P., Sundar, S., & Kumar, S. (2010). Synthesis and antileishmanial activity of piperoyl-amino acid conjugates. European Journal of Medicinal Chemistry, 45(8), 3439–3445. https://doi.org/10.1016/j.ejmech.2010.04.033
  • Qu, H., Lv, M., Yu, X., Lian, X., & Xu, H. (2015). Discovery of some piperine- based phenylsulfonylhydrazone derivatives as potent botanically narcotic agents. Scientific Reports, 5, 13077–13077. https://doi.org/10.1038/srep13077
  • Rao, V. R. S., Suresh, G., Rao, R. R., Babu, K. S., Chashoo, G., Saxena, A. K., & Rao, J. M. (2012). Synthesis of piperine – amino acid ester conjugates and study of their cytotoxic activities against human cancer cell lines. Medicinal Chemistry Research, 21, 38–46. https://doi.org/10.1007/s00044-010-9500-5
  • Sangwan, P. L., Koul, J. L., Koul, S., Reddy, M. v., Thota, N., Khan, I. A., Kumar, A., Kalia, N. P., & Qazi, G. N. (2008). Piperine analogs as potent Staphylococcus aureus NorA efflux pump inhibitors. Bioorganic and Medicinal Chemistry, 16(22), 9847–9857. https://doi.org/10.1016/j.bmc.2008.09.042
  • Scho, A., Wimmer, L., Goldmann, D., Khom, S., Hintersteiner, J., Baburin, I., Schwarz, T., Hintersteininger, M., Pakfeifer, P., Ou, M., Hamburger, M., Erker, T., Ecker, G. F., & Mihovilovic, M. D. (2014). Efficient modulation of γ - aminobutyric acid type A receptors by piperine derivatives. Journal of Medicinal Chemistry, 57(13), 5602-5619. https://doi.org/10.1021/jm5002277.
  • Takao, K., Miyashiro, T., & Sugita, Y. (2015). Synthesis and biological evaluation of piperic acid amides as free radical scavengers and α -glucosidase inhibitors. Chemical and Pharmaceutical Bulletin, 63(5), 326–333.
  • Takooree, H., Aumeeruddy, M. Z., Rengasamy, K. R. R., Venugopala, K. N., Jeewon, R., Zengin, G., & Mahomoodally, M. F. (2019). A systematic review on black pepper (Piper nigrum. L.): from folk uses to pharmacological applications. Critical Reviews in Food Science and Nutrition, 59(sup1), S210–S243. https://doi.org/10.1080/10408398.2019.1565489
  • Umadevi, P., Deepti, K., & Venugopal, D. V. R. (2013). Synthesis, anticancer and antibacterial activities of piperine analogs. Medicinal Chemistry Research, 22(11), 5466–5471. https://doi.org/10.1007/s00044-013-0541-4
  • Wei, K., Li, W., Koike, K., Chen, Y., & Nikaido, T. (2005). Nigramides A - S, dimeric amide alkaloids from the roots of Piper nigrum. c. Journal of Organic Chemistry,70(4), 1164–1176. https://doi.org/10.1021/jo040272a
  • Wei, K., Li, W., Koike, K., & Nikaido, T. (2005). Cobalt (II) -catalyzed intermolecular diels − alder reaction of piperine, Organic Letters,7(14), 2833–2835. https://doi.org/10.1021/ol050689i.
  • Zhu, P., Qian, J., Xu, Z., Meng, C., Liu, J., Shan, W., Zhu, W., Wang, Y., Yang, Y., Zhang, W., Zhang, Y., & Ling, Y. (2020). Piperlonguminine and piperine analogues as TrxR inhibitors that promote ROS and autophagy and regulate p38 and Akt/mTOR signaling. Journal of Natural Products, 83, 3041–3049. https://doi.org/10.1021/acs.jnatprod.0c00599

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.