207
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Molecular dynamics investigation of the interaction between volatile organic compounds and deep eutectic solvents

&
Pages 9-19 | Received 05 May 2023, Accepted 29 Sep 2023, Published online: 20 Oct 2023
 

ABSTRACT

Mixtures of tetrabutylammonium-chloride-based deep eutectic solvent (DES) and three volatile organic compounds (VOCs) – butanal, ethanol, and toluene – have been investigated using classical molecular dynamics simulations. Various structural analyses like radial and spatial distribution functions reveal the presence of specific interactions between DES components and VOCs. The interaction between the VOC and DES components depends on the nature of the former. Both ethanol and butanal have an H-bond interaction with chloride and ethylene glycol. Tetrabutylammonium cations are present above and below the ring of toluene due to the presence of π electron cloud, and toluene also forms π hydrogen bonds with ethylene glycol. The structure of DES is not significantly affected by the absorption of VOCs, which is reflected in their radial distribution functions. Components of DES become more mobile with the addition of VOCs. The interfacial region was found to be the most favourable location for the presence of VOCs.

Acknowledgments

The authors gratefully acknowledge NISER – Bhubaneswar for providing the computational resources.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.