207
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Molecular dynamics investigation of the interaction between volatile organic compounds and deep eutectic solvents

&
Pages 9-19 | Received 05 May 2023, Accepted 29 Sep 2023, Published online: 20 Oct 2023

References

  • Khan FI, Ghoshal AK. Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind. 2000;13(6):527–545. DOI:10.1016/S0950-4230(00)00007-3
  • Atkinson R. Atmospheric chemistry of VOCs and NOx. Atmos Environ. 2000;34(12–14):2063–2101. DOI:10.1016/S1352-2310(99)00460-4
  • Tancrede M, Wilson R, Zeise L, et al. The carcinogenic risk of some organic vapors indoors: a theoretical survey. Atmos Environ. 1987;21(10):2187–2205. DOI:10.1016/0004-6981(87)90351-9
  • Kostiainen R. Volatile organic compounds in the indoor air of normal and sick houses. Atmos Environ. 1995;29(6):693–702. DOI:10.1016/1352-2310(94)00309-9
  • Aikin A, Herman J, Maier E, et al. Atmospheric chemistry of ethane and ethylene. J Geophys Res Oceans. 1982;87(C4):3105–3118. DOI:10.1029/JC087iC04p03105
  • Parmar GR, Rao N. Emerging control technologies for volatile organic compounds. Crit Rev Environ Sci Technol. 2008;39(1):41–78. DOI:10.1080/10643380701413658
  • Ozturk B, Yilmaz D. Absorptive removal of volatile organic compounds from flue gas streams. Process Saf Environ Prot. 2006;84(5):391–398. DOI:10.1205/psep05003
  • Darracq G, Couvert A, Couriol C, et al. Silicone oil: an effective absorbent for the removal of hydrophobic volatile organic compounds. J Chem Technol Biotechnol. 2010;85(3):309–313. DOI:10.1002/jctb.v85:3
  • Quijano G, Couvert A, Amrane A, et al. Potential of ionic liquids for VOC absorption and biodegradation in multiphase systems. Chem Eng Sci. 2011;66(12):2707–2712. DOI:10.1016/j.ces.2011.01.047
  • Gao T, Andino JM, Alvarez-Idaboy JR. Computational and experimental study of the interactions between ionic liquids and volatile organic compounds. Phys Chem Chem Phys. 2010;12(33):9830–9838. DOI:10.1039/c003386c
  • Bedia J, Ruiz E, de Riva J, et al. Optimized ionic liquids for toluene absorption. AIChE J. 2013;59(5):1648–1656. DOI:10.1002/aic.13926
  • Indra S, Subramanian R, Daschakraborty S. Interaction of volatile organic compounds acetone and toluene with room temperature ionic liquid at the bulk and the liquid-vacuum interface. J Mol Liq. 2021;331:Article ID 115608. DOI:10.1016/j.molliq.2021.115608
  • Vieira MO, Monteiro WF, Ligabue R, et al. Ionic liquids composed of linear amphiphilic anions: synthesis, physicochemical characterization, hydrophilicity and interaction with carbon dioxide. J Mol Liq. 2017;241:64–73. DOI:10.1016/j.molliq.2017.06.006
  • Chaban VV, Andreeva NA. From tetraalkylphosphonium ionic liquids to phosphonium ylides: how the ionic sizes influence carbon dioxide capture? J Mol Liq. 2023;382:Article ID 121948. DOI:10.1016/j.molliq.2023.121948
  • Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (DESs) and their applications. Chem Rev. 2014;114(21):11060–11082. DOI:10.1021/cr300162p
  • Zhang Q, Vigier KDO, Royer S, et al. Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev. 2012;41(21):7108–7146. DOI:10.1039/c2cs35178a
  • Abbott AP, Capper G, Davies DL, et al. Novel solvent properties of choline chloride/urea mixtures. Chem Commun. 2003;(1):70–71. DOI:10.1039/b210714g
  • Abbott AP, Boothby D, Capper G, et al. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc. 2004;126(29):9142–9147. DOI:10.1021/ja048266j
  • Li C, Li D, Zou S, et al. Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents. Green Chem. 2013;15(10):2793–2799. DOI:10.1039/c3gc41067f
  • Abbott AP, El Ttaib K, Frisch G, et al. Electrodeposition of copper composites from deep eutectic solvents based on choline chloride. Phys Chem Chem Phys. 2009;11(21):4269–4277. DOI:10.1039/b817881j
  • Liao HG, Jiang YX, Zhou ZY, et al. Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure–functionality relationships in electrocatalysis. Angew Chem Int Ed. 2008;47(47):9100–9103. DOI:10.1002/anie.v47:47
  • Li X, Hou M, Han B, et al. Solubility of CO 2 in a choline chloride+urea eutectic mixture. J Chem Eng Data. 2008;53(2):548–550. DOI:10.1021/je700638u
  • Moura L, Moufawad T, Ferreira M, et al. Deep eutectic solvents as green absorbents of volatile organic pollutants. Environ Chem Lett. 2017;15(4):747–753. DOI:10.1007/s10311-017-0654-y
  • Alioui O, Benguerba Y, Alnashef IM. Investigation of the CO 2-solubility in deep eutectic solvents using cosmo-rs and molecular dynamics methods. J Mol Liq. 2020;307:Article ID 113005. DOI:10.1016/j.molliq.2020.113005
  • Lemaoui T, Boublia A, Lemaoui S, et al. Predicting the CO 2 capture capability of deep eutectic solvents and screening over 1000 of their combinations using machine learning. ACS Sustainable Chem Eng. 2023;11(26):9564–9580. DOI:10.1021/acssuschemeng.3c00415.
  • Halder AK, Ambure P, Perez-Castillo Y, et al. Turning deep-eutectic solvents into value-added products for CO 2 capture: a desirability-based virtual screening study. J CO2 Util. 2022;58:Article ID 101926. DOI:10.1016/j.jcou.2022.101926
  • Mjalli FS, Naser J, Jibril B, et al. Tetrabutylammonium chloride based ionic liquid analogues and their physical properties. J Chem Eng Data. 2014;59(7):2242–2251. DOI:10.1021/je5002126
  • Abraham M, Van Der Spoel D, Lindahl E, et al. The GROMACS development team. GROMACS User Manual Version. 2014;5(2):1–298.
  • Abraham MJ, Murtola T, Schulz R, et al. Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25. DOI:10.1016/j.softx.2015.06.001
  • Jorgensen WL, Tirado-Rives J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc Natl Acad Sci USA. 2005;102(19):6665–6670. DOI:10.1073/pnas.0408037102
  • Dodda LS, Vilseck JZ, Tirado-Rives J, et al. 1.14*CM1A-LBCC: localized bond-charge corrected AM1A charges for condensed-phase simulations. J Phys Chem B. 2017;121(15):3864–3870. DOI:10.1021/acs.jpcb.7b00272
  • Dodda LS, Cabeza de Vaca I, Tirado-Rives J, et al. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res. 2017;45(W1):W331–W336. DOI:10.1093/nar/gkx312
  • Panda DK, Bhargava BL. Intermolecular interactions in tetrabutylammonium chloride based deep eutectic solvents: classical molecular dynamics studies. J Mol Liq. 2021;335:Article ID 116139. DOI:10.1016/j.molliq.2021.116139
  • Ferreira ES, Voroshylova IV, Pereira CM, et al. Improved force field model for the deep eutectic solvent ethaline: reliable physicochemical properties. J Phys Chem B. 2016;120(38):10124–10137. DOI:10.1021/acs.jpcb.6b07233
  • Ferreira ES, Voroshylova IV, Figueiredo NM, et al. Molecular dynamic study of alcohol-based deep eutectic solvents. J Chem Phys. 2021;155(6): Article ID: 064506. DOI:10.1063/5.0058561.
  • Goloviznina K, Gong Z, Costa Gomes MF, et al. Extension of the CL&Pol polarizable force field to electrolytes, protic ionic liquids, and deep eutectic solvents. J Chem Theory Comput. 2021;17(3):1606–1617. DOI:10.1021/acs.jctc.0c01002
  • Jorge M, Lue L. The dielectric constant: reconciling simulation and experiment. J Chem Phys. 2019;150(8):Article ID:084108. DOI:10.1063/1.5080927.
  • Jorge M, Gomes JR, Milne AW. Self-consistent electrostatic embedding for liquid phase polarization. J Mol Liq. 2021;322:Article ID 114550. DOI:10.1016/j.molliq.2020.114550
  • Martínez L, Andrade R, Birgin E, et al. Software news and updatepackmol: a package for building initial configurations for molecular dynamics simulations. J Comput Chem. 2009;30(13):2157–2164. DOI:10.1002/jcc.v30:13
  • Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81(1):511–519. DOI:10.1063/1.447334
  • Hoover W. Canonical dynamics-method for simulations in the canonical ensemble. Phys Rev A: At Mol Opt Phys. 1985;31:1695–1697. DOI:10.1103/PhysRevA.31.1695
  • Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52(12):7182–7190. DOI:10.1063/1.328693
  • Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford: Clarendon Press; 1987.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09 revision C.01. Wallingford (CT): Gaussian; 2010.
  • Wagle DV, Deakyne CA, Baker GA. Quantum chemical insight into the interactions and thermodynamics present in choline chloride based deep eutectic solvents. J Phys Chem B. 2016;120(27):6739–6746. DOI:10.1021/acs.jpcb.6b04750
  • Humphrey W, Dalke A, Schulten K. Vmd: visual molecular dynamics. J Mol Graphics,. 1996;14(1):33–38. DOI:10.1016/0263-7855(96)00018-5
  • Brehm M, Kirchner B. Travis – a free analyzer and visualizer for monte carlo and molecular dynamics trajectories. J Chem Inf Model. 2011;51(8):2007–2023. DOI:10.1021/ci200217w
  • Desiraju GR, Steiner T. The weak hydrogen bond in structural chemistry and biology. New York (NY): Oxford University Press; 2001.
  • Chandler D. Introduction to modern statistical mechanics. Oxford: Oxford University Press; 1987. p. 5.
  • Chacón E, Tarazona P. Intrinsic profiles beyond the capillary wave theory: a Monte Carlo study. Phys Rev Lett. 2003;91(16):Article ID 166103. DOI:10.1103/PhysRevLett.91.166103
  • Jorge M, Jedlovszky P, Cordeiro MND. A critical assessment of methods for the intrinsic analysis of liquid interfaces. 1. Surface site distributions. J Phys Chem C. 2010;114(25):11169–11179. DOI:10.1021/jp101035r
  • Hantal G, Cordeiro MND, Jorge M. What does an ionic liquid surface really look like? Unprecedented details from molecular simulations. Phys Chem Chem Phys. 2011;13(48):21230–21232. DOI:10.1039/c1cp22639h
  • Hantal G, Voroshylova I, Cordeiro MND, et al. A systematic molecular simulation study of ionic liquid surfaces using intrinsic analysis methods. Phys Chem Chem Phys. 2012;14(15):5200–5213. DOI:10.1039/c2cp23967a
  • Palchowdhury S, Bhargava BL. Surface structure and dynamics of ions at the liquid–vapor interface of binary ionic liquid mixtures: molecular dynamics studies. J Phys Chem C. 2016;120(10):5430–5441. DOI:10.1021/acs.jpcc.5b10868
  • Lbadaoui-Darvas M, Garberoglio G, Karadima KS, et al. Molecular simulations of interfacial systems: challenges, applications and future perspectives. Mol Simul. 2023;49(12):1229–1266. DOI:10.1080/08927022.2021.1980215
  • Hotopp KM, Vara VV, Dian BC. Conformational analysis of n-butanal by chirped-pulse fourier transform microwave spectroscopy. J Mol Spectrosc. 2012;280:104–109. DOI:10.1016/j.jms.2012.06.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.