193
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A simplified protocol for gene expression-based biological dosimetry using peripheral whole blood

ORCID Icon & ORCID Icon
Pages 1692-1701 | Received 06 Jan 2023, Accepted 08 Jun 2023, Published online: 12 Jul 2023
 

Abstract

Purpose

Assessing alterations in the expression of radiation-responsive genes in peripheral blood cells is considered a promising approach for high-throughput radiation biodosimetry. However, optimization of conditions for storage and transport of blood samples would be critical for obtaining reliable results. Recent studies involved the incubation of isolated peripheral blood mononuclear cells (in cell culture medium) and/or use of RNA stabilizing agents for sample storage, immediately after the ex vivo irradiation of whole blood. We used a simpler protocol by incubating undiluted peripheral whole blood without any RNA stabilizing agent, and studied the impact of storage temperature and incubation time on the expression levels of 19 known radiation responsive genes.

Materials & methods

Peripheral whole blood was γ-irradiated ex vivo at room temperature at low (0.5 Gy), moderate (1 Gy, 2 Gy) and high (4 Gy) doses and immediately incubated at two different temperatures at 4 °C or 37 °C for 2h, 4h and 24 h. Using qRT-PCR, mRNA expression levels of CDKN1A, DDB2, GADD45A, FDXR, BAX, BBC3, MYC, PCNA, XPC, ZMAT3, AEN, TRIAP1, CCNG1, RPS27L, CD70, EI24, C12orf5, TNFRSF10B, ASCC3 were analyzed at respective time-points and compared with the sham-irradiated controls.

Results

Transcriptional responses of all 19 genes did not alter significantly upon incubation of whole blood samples at 4 °C, as compared to untreated controls. However, incubation at 37 °C for 24 h resulted in significant radiation-induced overexpression in 14 out of the 19 genes analyzed (except CDKN1A, BBC3, MYC, CD 70 and EI24). Detailed patterns during incubation at 37 °C revealed time-dependent up-regulation of these genes, with DDB2 and FDXR showing significant up-regulation both at 4 and 24 h with the highest fold-change observed.

Conclusion

Overall, the undiluted whole blood incubated at 37 °C for 24 h was found to elicit most optimal transcriptional response in the genes studied, with most profound overexpression of DDB2 and FDXR. We propose that sample storage/transport/post-transit incubation at the physiological temperature for up to 24 h may enhance the sensitivity of gene expression based biodosimetry and facilitate its usage for triage application.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This study was funded by the Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research & Development Organization (DRDO), Delhi, India

Notes on contributors

Shuchi Bhagi

Shuchi Bhagi, PhD, is a Scientist at the Division of Molecular & Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences (INMAS).

Sudhir Chandna

Sudhir Chandna, PhD, is a Senior Scientist and Head of the Division of Molecular & Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences (INMAS).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,004.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.