373
Views
2
CrossRef citations to date
0
Altmetric
Articles

Towards optimal toe-clearance in synthesizing polycentric prosthetic knee mechanism

ORCID Icon &
Pages 656-667 | Received 23 Dec 2020, Accepted 21 Aug 2021, Published online: 21 Sep 2021
 

Abstract

Stability at the stance phase and near normal able-bodied swing phase kinematics are essential in designing the prosthetic knee mechanism for transfemoral amputees. Primarily, insufficient mid swing toe clearance results in asymmetrical gait patterns, leading to muscular-skeletal pain and joint degeneration. The present work is focused on synthesizing a polycentric knee mechanism to enhance the toe-clearance at mid-swing for safe level ground walking of amputees in developing countries. Both fixed and moving centrodes of the four-bar knee mechanism are considered in optimal synthesis of the mechanism for achieving able-bodied gait patterns using evolutionary algorithms in mechanism design software tools. The knee stability at heel contact, stabilizing moment at push-off, stable knee flexion range, maximum knee flexion and maximum toe-clearance at mid-swing are the parameters used for comparing the knee design with the existing commercially available designs. The optimized results are then verified experimentally by building a functional prototype using a 3 D printing technique. The designed mechanism executes nominal performance in four parameters and offers enhanced toe-clearance during mid-swing. This is a significant improvement over the existing designs for amputees to navigate comfortably on irregular terrain in developing countries.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

No funding support has been received for this research work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.