726
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Lipid nutritional quality of marine and freshwater bivalves and their aquaculture potential

, , , ORCID Icon & ORCID Icon
Pages 6990-7014 | Published online: 13 Apr 2021
 

Abstract

Omega-3 Long-chain polyunsaturated fatty acids (n-3 LC-PUFA) are beneficial to human health. Since the industrial revolution, with the tremendous increase of human population, the supply of natural n-3 LC-PUFA is far lower than the nutritional need of n-3 LC-PUFA. Therefore, a new alternative source of natural n-3 LC-PUFA is urgently needed to reduce the supply and demand gap of n-3 LC-PUFA. Mollusks, mainly bivalves, are rich in n-3 LC-PUFA, but the information of bivalves’ lipid profile is not well organized. Therefore, this study aims to analyze the published fatty acid profiles of bivalves and reveal the potential of bivalve aquaculture in meeting the nutritional needs of human for n-3 LC-PUFA. There are growing evidence show that the nutritional quality of bivalve lipid is not only species-specific, but also geographical specific. To date, bivalve aquaculture has not been evenly practiced across the globe. It can be seen that aquaculture is predominant in Asia, especially China. Unlike fish aquaculture, bivalve aquaculture does not rely on fishmeal and fish oil inputs, so it has better room for expansion. In order to unleash the full potential of bivalve aquaculture, there are some challenges need to be addressed, including recurrent mass mortalities of farmed bivalves, food safety and food security issues. The information of this article is very useful to provide an overview of lipid nutritional quality of bivalves, and reveal the potential of bivalve aquaculture in meeting the growing demand of human for n-3 LC-PUFA.

Additional information

Funding

Present study was financially supported by National Key R&D Program of China (2018YFD0901400), National Natural Science Foundation of China (31872563), China Postdoctoral Science Foundation (2019M663019), China Modern Agro-industry Technology Research System (CARS-49), and Department of Education of Guangdong Province, China (2017KCXTD014).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 440.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.