8,183
Views
95
CrossRef citations to date
0
Altmetric
Original Articles

Current achievements and the future direction of electrochemical CO2 reduction: A short review

, , , , &
Pages 769-815 | Published online: 28 Jun 2019
 

Abstract

Electrochemical CO2 reduction (CO2RR) has received much attention for its ability to generate value-added chemicals from a molecule that would otherwise be a waste end-product. Numerous studies have emerged in the past decades, but the renewable and sustainable carbon-neutral CO2 reduction process is yet to be industrialized. Here, we review the progress and bottlenecks of the electrochemical CO2 reduction technologies over the past 15 years (2004–2018) to examine whether CO2RR process is to be applicable in a large-scale. Although the techno-economic analysis and pilot plants based on liquid-phase electrolysis have shown some positive results, current densities of the liquid-phase electrochemical CO2 reduction are well below what techno-economic analyzes have projected due to its intrinsic limitations of solubility. On the other hand, the gas-phase electrolysis of CO2 has shown superior performance parameters compared to the liquid-phase electrolysis, especially in the current densities, showing commercial viability although its techno-economic analysis is yet to be performed. Herein, we offer some perspectives and guidelines where future research in CO2 electrolysis should aim. Based on the performance parameters obtained from the lab-scale gas-phase reactions, we believe that the current negative outlooks towards the industrial feasibility of the CO2 electrolysis system could turn to positive views.

Acknowledgment

This work has been supported by ‘‘Next Generation Carbon Upcycling Project’’ (Project No. 2017M1A2A2043150 and No. 2017M1A2A2043122) through the National Research Foundation (NRF) funded by the Ministry of Science and ICT, Republic of Korea.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 652.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.