8,183
Views
95
CrossRef citations to date
0
Altmetric
Original Articles

Current achievements and the future direction of electrochemical CO2 reduction: A short review

, , , , &
Pages 769-815 | Published online: 28 Jun 2019

References

  • Agarwal, A. S., Zhai, Y., Hill, D., & Sridhar, N. (2011). The electrochemical reduction of carbon dioxide to formate/formic acid: Engineering and economic feasibility. ChemSusChem, 4(9), 1301–1310. doi:10.1002/cssc.201100220
  • Albo, J., Beobide, G., Castaño, P., & Irabien, A. (2017). Methanol electrosynthesis from CO2 at Cu2O/ZnO prompted by pyridine-based aqueous solutions. Journal of CO2 Utilization, 18, 164.
  • Albo, J., & Irabien, A. (2016). Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol. Journal of Catalysis, 343, 232–239. doi:10.1016/j.jcat.2015.11.014
  • Al-Rowaili, F. N., Jamal, A., Ba Shammakh, M. S., & Rana, A. (2018). A review on recent advances for electrochemical reduction of carbon dioxide to methanol using metal–organic framework (MOF) and non-MOF catalysts: Challenges and future prospects. ACS Sustainable Chemistry & Engineering, 6, 15895–15914. doi:10.1021/acssuschemeng.8b03843
  • Ampelli, C., Genovese, C., Errahali, M., Gatti, G., Marchese, L., Perathoner, S., & Centi, G. (2015). CO2 capture and reduction to liquid fuels in a novel electrochemical setup by using metal-doped conjugated microporous polymers. Journal of Applied Electrochemistry, 45(7), 701–713. doi:10.1007/s10800-015-0847-7
  • Ampelli, C., Genovese, C., Marepally, B. C., Papanikolaou, G., Perathoner, S., & Centi, G. (2015). Electrocatalytic conversion of CO2 to produce solar fuels in electrolyte or electrolyte-less configurations of PEC cells. Faraday Discussions, 183, 125–145. doi:10.1039/c5fd00069f
  • Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods: Fundamentals and applications. Hoboken, NJ: John Wiley & Sons, Inc.
  • Bashir, S., Hossain, S. S., Rahman, SU., Ahmed, S., Amir, A.-A., & Hossain, M. M. (2016). Electrocatalytic reduction of carbon dioxide on SnO2/MWCNT in aqueous electrolyte solution. Journal of CO2 Utilization, 16, 346–353.
  • Baturina, O. A., Lu, Q., Padilla, M. A., Xin, L., Li, W., Serov, A., … Collins, G. E. (2014). CO2 electroreduction to hydrocarbons on carbon-supported Cu nanoparticles. ACS Catalysis, 4(10), 3682–3695. doi:10.1021/cs500537y
  • Benson, E. E., Kubiak, C. P., Sathrum, A. J., & Smieja, J. M. (2009). Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chemical Society Reviews, 38(1), 89–99. doi:10.1039/B804323J
  • Bitar, Z., Fecant, A., Trela-Baudot, E., Chardon-Noblat, S., & Pasquier, D. (2016). Electrocatalytic reduction of carbon dioxide on indium coated gas diffusion electrodes—Comparison with indium foil. Applied Catalysis B: Environmental, 189, 172–180. doi:10.1016/j.apcatb.2016.02.041
  • Cao, Z., Kim, D., Hong, D., Yu, Y., Xu, J., Lin, S., … Chang, C. J. (2016). A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction. Journal of the American Chemical Society, 138(26), 8120–8125. doi:10.1021/jacs.6b02878
  • Centi, G., & Perathoner, S. (2009). Catalysis: Role and challenges for a sustainable energy. Topics in Catalysis, 52(8), 948–961. doi:10.1007/s11244-009-9245-x
  • Centi, G., Perathoner, S., Winè, G., & Gangeri, M. (2007). Electrocatalytic conversion of CO2 to long carbon-chain hydrocarbons. Green Chemistry, 9(6), 671–678. doi:10.1039/b615275a
  • Chai, G. L., & Guo, Z. X. (2016). Highly effective sites and selectivity of nitrogen-doped graphene/CNT catalysts for CO2 electrochemical reduction. Chemical Science, 7(2), 1268–1275. doi:10.1039/C5SC03695J
  • Chen, C. S., Wan, J. H., & Yeo, B. S. (2015). Electrochemical reduction of carbon dioxide to ethane using nanostructured Cu2O-derived copper catalyst and palladium(II) chloride. The Journal of Physical Chemistry C, 119(48), 26875–26882. doi:10.1021/acs.jpcc.5b09144
  • Chen, Y., & Kanan, M. W. (2012). Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. Journal of the American Chemical Society, 134(4), 1986–1989. doi:10.1021/ja2108799
  • Chi, D., Yang, H., Du, Y., Lv, T., Sui, G., Wang, H., & Lu, J. (2014). Morphology-controlled CuO nanoparticles for electroreduction of CO2 to ethanol. RSC Advances, 4(70), 37329–37332. doi:10.1039/C4RA05415F
  • Clark, E. L., Hahn, C., Jaramillo, T. F., & Bell, A. T. (2017). Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. Journal of the American Chemical Society, 139(44), 15848–15857. doi:10.1021/jacs.7b08607
  • Clark, E. L., Resasco, J., Landers, A., Lin, J., Chung, L.-T., Walton, A., … Bell, A. T. (2018). Data acquisition protocols and reporting standards for studies of the electrochemical reduction of carbon dioxide. ACS Catalysis, 8(7), 6560–6570. doi:10.1021/acscatal.8b01340
  • CORDIS. (2018). Oxalic acid from CO2 using electrochemistry at demonstration scale. Retrieved from https://cordis.europa.eu/project/rcn/211278_en.html
  • Daiyan, R., Lu, X., Ng, Y. H., & Amal, R. (2017). Liquid hydrocarbon production from CO2: Recent development in metal-based electrocatalysis. ChemSusChem, 10(22), 4342–4358. doi:10.1002/cssc.201701631
  • Daiyan, R., Lu, X., Saputera, W. H., Ng, Y. H., & Amal, R. (2018). Highly selective reduction of CO2 to formate at low overpotentials achieved by a mesoporous tin oxide electrocatalyst. ACS Sustainable Chemistry & Engineering, 6, 1670–1679. doi:10.1021/acssuschemeng.7b02913
  • De Luna, P., Quintero-Bermudez, R., Dinh, C.-T., Ross, M. B., Bushuyev, O. S., Todorović, P., … Sargent, E. H. (2018). Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nature Catalysis, 1(2), 103–110. doi:10.1038/s41929-017-0018-9
  • Deng, W., Zhang, L., Dong, H., Chang, X., Wang, T., & Gong, J. (2018). Achieving convenient CO2 electroreduction and photovoltage in tandem using potential-insensitive disordered Ag nanoparticles. Chemical Science, 9(32), 6599–6604. doi:10.1039/C8SC02576B
  • Dinh, C.-T., Burdyny, T., Kibria, M. G., Seifitokaldani, A., Gabardo, C. M., García de Arquer, F. P., … Sargent, E. H. (2018). CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science, 360(6390), 783–787. doi:10.1126/science.aas9100
  • Dioxide Materials. (2016). Energy efficient electrochemical conversion of carbon dioxide into useful products. Washington, DC: A. R. P. Agency-Energy. Retrieved from http://arpa-e.energy.gov/?q=slick-sheet-project/converting-co2-fuel-and-chemicals
  • Dominguez-Ramos, A., Singh, B., Zhang, X., Hertwich, E. G., & Irabien, A. (2015). Global warming footprint of the electrochemical reduction of carbon dioxide to formate. Journal of Cleaner Production, 104, 148–155. doi:10.1016/j.jclepro.2013.11.046
  • Duan, X., Xu, J., Wei, Z., Ma, J., Guo, S., Wang, S., … Dou, S. (2017). Metal-free carbon materials for CO2 electrochemical reduction. Advanced Materials, 29(41), 1701784. doi:10.1002/adma.201701784
  • Dunwell, M., Lu, Q., Heyes, J. M., Rosen, J., Chen, J. G., Yan, Y., … Xu, B. (2017). The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. Journal of the American Chemical Society, 139(10), 3774–3783. doi:10.1021/jacs.6b13287
  • Endrődi, B., Bencsik, G., Darvas, F., Jones, R., Rajeshwar, K., & Janáky, C. (2017). Continuous-flow electroreduction of carbon dioxide. Progress in Energy and Combustion Science, 62, 133–154. doi:10.1016/j.pecs.2017.05.005
  • Engelbrecht, A., Hämmerle, M., Moos, R., Fleischer, M., & Schmid, G. (2017). Improvement of the selectivity of the electrochemical conversion of CO2 to hydrocarbons using cupreous electrodes with in-situ oxidation by oxygen. Electrochimica Acta, 224, 642–648. doi:10.1016/j.electacta.2016.12.059
  • Francke, R., Schille, B., & Roemelt, M. (2018). Homogeneously catalyzed electroreduction of carbon dioxide–methods, mechanisms, and catalysts. Chemical Reviews, 118(9), 4631–4701. doi:10.1021/acs.chemrev.7b00459
  • Fu, Y., Li, Y., Zhang, X., Liu, Y., Qiao, J., Zhang, J., & Wilkinson, D. P. (2016). Novel hierarchical SnO2 microsphere catalyst coated on gas diffusion electrode for enhancing energy efficiency of CO2 reduction to formate fuel. Applied Energy, 175, 536–544. doi:10.1016/j.apenergy.2016.03.115
  • Ganesh, I. (2016). Electrochemical conversion of carbon dioxide into renewable fuel chemicals – The role of nanomaterials and the commercialization. Renewable and Sustainable Energy Reviews, 59, 1269–1297. doi:10.1016/j.rser.2016.01.026
  • Gao, D., Zegkinoglou, I., Divins, N. J., Scholten, F., Sinev, I., Grosse, P., & Roldan Cuenya, B. (2017). Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano, 11(5), 4825–4831. doi:10.1021/acsnano.7b01257
  • Gas Innovations. (2018). eCOs™ – Electrolytic carbon monoxide solution. Gas Innovations, La Porte, TX. Retrieved from https://gasinnovations.com/wp-content/uploads/Gas-Innovations-eCOs-Tech-Brief-Benefits.pdf
  • Gattrell, M., Gupta, N., & Co, A. (2006). A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. Journal of Electroanalytical Chemistry, 594(1), 1–19. doi:10.1016/j.jelechem.2006.05.013
  • Ge, H., Gu, Z., Han, P., Shen, H., Al-Enizi, A. M., Zhang, L., & Zheng, G. (2018). Mesoporous tin oxide for electrocatalytic CO2 reduction. Journal of Colloid and Interface Science, 531, 564–569. doi:10.1016/j.jcis.2018.07.066
  • Genovese, C., Ampelli, C., Perathoner, S., & Centi, G. (2013). Electrocatalytic conversion of CO2 to liquid fuels using nanocarbon-based electrodes. Journal of Energy Chemistry, 22(2), 202–213. doi:10.1016/S2095-4956(13)60026-1
  • Genovese, C., Ampelli, C., Perathoner, S., & Centi, G. (2017). Mechanism of C–C bond formation in the electrocatalytic reduction of CO2 to acetic acid. A challenging reaction to use renewable energy with chemistry. Green Chemistry, 19(10), 2406–2415. doi:10.1039/C6GC03422E
  • Genovese, C., Schuster, M. E., Gibson, E. K., Gianolio, D., Posligua, V., Grau-Crespo, R., … Arrigo, R. (2018). Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon. Nature Communications, 9(1), 935.
  • Gonçalves, M. R., Gomes, A., Condeço, J., Fernandes, T. R. C., Pardal, T., Sequeira, C. A. C., & Branco, J. B. (2010). Selective electrochemical conversion of CO2 to C2 hydrocarbons. Energy Conversion and Management, 51(1), 30–32. doi:10.1016/j.enconman.2009.08.002
  • Gonçalves, M. R., Gomes, A., Condeço, J., Fernandes, T. R. C., Pardal, T., Sequeira, C. A. C., & Branco, J. B. (2013). Electrochemical conversion of CO2 to C2 hydrocarbons using different ex situ copper electrodeposits. Electrochimica Acta, 102, 388–392. doi:10.1016/j.electacta.2013.04.015
  • Gu, J., Héroguel, F., Luterbacher, J., & Hu, X. (2018). Densely packed, ultra small SnO nanoparticles for enhanced activity and selectivity in electrochemical CO2 reduction. Angewandte Chemie International Edition, 57(11), 2943–2947. doi:10.1002/anie.201713003
  • Guo, S., Zhao, S., Gao, J., Zhu, C., Wu, X., Fu, Y., … Kang, Z. (2017). Cu-CDots nanocorals as electrocatalyst for highly efficient CO2 reduction to formate. Nanoscale, 9(1), 298–304. doi:10.1039/c6nr08104e
  • Hahn, C., Abram, D. N., Hansen, H. A., Hatsukade, T., Jackson, A., Johnson, N. C., … Jaramillo, T. F. (2015). Synthesis of thin film AuPd alloys and their investigation for electrocatalytic CO2 reduction. Journal of Materials Chemistry A, 3(40), 20185–20194. doi:10.1039/C5TA04863J
  • Hahn, C., Hatsukade, T., Kim, Y. G., Vailionis, A., Baricuatro, J. H., Higgins, D. C., … Jaramillo, T. F. (2017). Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons. Proceedings of the National Academy of Sciences, 114(23), 5918–5923. doi:10.1073/pnas.1618935114
  • Hatsukade, T., Kuhl, K. P., Cave, E. R., Abram, D. N., & Jaramillo, T. F. (2014). Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces. Physical Chemistry Chemical Physics, 16(27), 13814–13819. doi:10.1039/C4CP00692E
  • He, G., Tang, H., Wang, H., & Bian, Z. (2018). Highly selective and active Pd-In/three-dimensional graphene with special structure for electroreduction CO2 to formate. Electroanalysis, 30(1), 84–93. doi:10.1002/elan.201700525
  • Hong, W., Jia, J., Pengfei, S., Qiang, W., Debao, L., Shixiong, M., … A, O. G. (2017). Efficient electrocatalytic reduction of CO2 by nitrogen‐doped nanoporous carbon/carbon nanotube membranes: A step towards the electrochemical CO2 refinery. Angewandte Chemie International Edition, 56, 7847–7852. doi:10.1002/anie.201703720
  • Hori, Y., Kikuchi, K., Murata, A., & Suzuki, S. (1986). Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution. Chemistry Letters, 15(6), 897–898. doi:10.1246/cl.1986.897
  • Hori, Y., Murata, A., Takahashi, R., & Suzuki, S. (1988). Enhanced formation of ethylene and alcohols at ambient temperature and pressure in electrochemical reduction of carbon dioxide at a copper electrode. Journal of the Chemical Society, Chemical Communications, 17–19. doi:10.1039/c39880000017
  • Hori, Y., Takahashi, I., Koga, O., & Hoshi, N. (2003). Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. Journal of Molecular Catalysis A: Chemical, 199(1-2), 39–47. doi:10.1016/S1381-1169(03)00016-5
  • Hori, Y., Takahashi, R., Yoshinami, Y., & Murata, A. (1997). Electrochemical reduction of CO at a copper electrode. The Journal of Physical Chemistry B, 101(36), 7075–7081. doi:10.1021/jp970284i
  • Hou, P., Wang, X., Wang, Z., & Kang, P. (2018). Gas phase electrolysis of carbon dioxide to carbon monoxide using nickel nitride as the carbon enrichment catalyst. ACS Applied Materials & Interfaces, 10(44), 38024–38031. doi:10.1021/acsami.8b11942
  • Huang, P., Ci, S., Wang, G., Jia, J., Xu, J., & Wen, Z. (2017). High-activity Cu nanowires electrocatalysts for CO2 reduction. Journal of CO2 Utilization, 20, 27–33. doi:10.1016/j.jcou.2017.05.002
  • Hussain, J., Jónsson, H., & Skúlason, E. (2018). Calculations of product selectivity in electrochemical CO2 reduction. ACS Catalysis, 8(6), 5240–5249. doi:10.1021/acscatal.7b03308
  • IPCC. (2005). IPCC Special Report on Carbon Dioxide Capture and Storage. New York, NY: Cambridge University Press. Retrieved from https://www.ipcc.ch/pdf/special-reports/srccs/srccs_wholereport.pdf
  • Irfan Malik, M., Malaibari, Z. O., Atieh, M., & Abussaud, B. (2016). Electrochemical reduction of CO2 to methanol over MWCNTs impregnated with Cu2O. Chemical Engineering Science, 152, 468–477. doi:10.1016/j.ces.2016.06.035
  • Jee, M. S., Kim, H., Jeon, H. S., Chae, K. H., Cho, J., Min, B. K., & Hwang, Y. J. (2017). Stable surface oxygen on nanostructured silver for efficient CO2 electroreduction. Catalysis Today, 288, 48–53. doi:10.1016/j.cattod.2016.09.026
  • Jeong, H. M., Yeo, B. S., & Kwon, Y. (2018). Electrochemical reduction of carbon dioxide: Overcoming the limitations of photosynthesis. London, UK: The Royal Society of Chemistry.
  • Jhong, H.-R. M., Ma, S., & Kenis, P. J. A. (2013). Electrochemical conversion of CO2 to useful chemicals: Current status, remaining challenges, and future opportunities. Current Opinion in Chemical Engineering, 2(2), 191–199. doi:10.1016/j.coche.2013.03.005
  • Jhong, H.-R. M., Tornow, C. E., Kim, C., Verma, S., Oberst, J. L., Anderson, P. S., … Kenis, P. J. A. (2017). Gold nanoparticles on polymer‐wrapped carbon nanotubes: An efficient and selective catalyst for the electroreduction of CO2. ChemPhysChem, 18(22), 3274–3279. doi:10.1002/cphc.201700815
  • Jhong, H.-R. M., Tornow, C. E., Smid, B., Gewirth, A. A., Lyth, S. M., & Kenis, P. J. A. (2017). A nitrogen-doped carbon catalyst for electrochemical CO2 conversion to CO with high selectivity and current density. ChemSusChem, 10(6), 1094–1099. doi:10.1002/cssc.201600843
  • Jia, F., Yu, X., & Zhang, L. (2014). Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu-Au alloy as catalyst. Journal of Power Sources, 252, 85–89. doi:10.1016/j.jpowsour.2013.12.002
  • Jiang, B., Zhang, X.-G., Jiang, K., Wu, D.-Y., & Cai, W.-B. (2018). Boosting formate production in electrocatalytic CO2 reduction over wide potential window on Pd surfaces. Journal of the American Chemical Society, 140(8), 2880–2889. doi:10.1021/jacs.7b12506
  • Jiang, K., Sandberg, R. B., Akey, A. J., Liu, X., Bell, D. C., Nørskov, J. K., … Wang, H. (2018). Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nature Catalysis, 1(2), 111–119. doi:10.1038/s41929-017-0009-x
  • Jones, J.-P., Prakash, G. K. S., & Olah, G. A. (2014). Electrochemical CO2 reduction: Recent advances and current trends. Israel Journal of Chemistry, 54(10), 1451–1466. doi:10.1002/ijch.201400081
  • Jouny, M., Luc, W., & Jiao, F. (2018). General techno-economic analysis of CO2 electrolysis systems. Industrial & Engineering Chemistry Research, 57, 2165–2177. doi:10.1021/acs.iecr.7b03514
  • Junyuan, X., Yuhe, K., Rui, H., Bingsen, Z., Bolun, W., Kuang‐Hsu, W., … Dangsheng, S. (2016). Revealing the origin of activity in nitrogen‐doped nanocarbons towards electrocatalytic reduction of carbon dioxide. ChemSusChem, 9, 1085–1089. doi:10.1002/cssc.201600202
  • Ke, F. S., Liu, X. C., Wu, J., Sharma, P. P., Zhou, Z. Y., Qiao, J., & Zhou, X. D. (2017). Selective formation of C2 products from the electrochemical conversion of CO2 on CuO-derived copper electrodes comprised of nanoporous ribbon arrays. Catalysis Today, 288, 18–23. doi:10.1016/j.cattod.2016.10.001
  • Keerthiga, G., & Chetty, R. (2017). Electrochemical reduction of carbon dioxide on zinc-modified copper electrodes. Journal of the Electrochemical Society, 164(4), H164–H169. doi:10.1149/2.0421704jes
  • Kibria, M. G., Dinh, C.-T., Seifitokaldani, A., De Luna, P., Burdyny, T., Quintero-Bermudez, R., … Sargent, E. H. (2018). A surface reconstruction route to high productivity and selectivity in CO2 electroreduction toward C2+ hydrocarbons. Advanced Materials, 30(49), 1804867. doi:10.1002/adma.201804867
  • Kim, C., Eom, T., Jee, M. S., Jung, H., Kim, H., Min, B. K., & Hwang, Y. J. (2017). Insight into electrochemical CO2 reduction on surface-molecule-mediated Ag nanoparticles. ACS Catalysis, 7(1), 779–785. doi:10.1021/acscatal.6b01862
  • Kim, D., Kley, C. S., Li, Y., & Yang, P. (2017). Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proceedings of the National Academy of Sciences, 114(40), 10560–10565. doi:10.1073/pnas.1711493114
  • Kim, D., Lee, S., Ocon, J. D., Jeong, B., Lee, J. K., & Lee, J. (2015). Insights into an autonomously formed oxygen-evacuated Cu2O electrode for the selective production of C2H4 from CO2. Physical Chemistry Chemical Physics, 17(2), 824–830. doi:10.1039/C4CP03172E
  • Kim, D., Resasco, J., Yu, Y., Asiri, A. M., & Yang, P. (2014). Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nature Communications, 5(1), 4948.
  • Kim, D., Xie, C., Becknell, N., Yu, Y., Karamad, M., Chan, K., … Yang, P. (2017). Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. Journal of the American Chemical Society, 139(24), 8329–8336. doi:10.1021/jacs.7b03516
  • Kim, J. S., Shin, H. S., Hyun, S. T., Shin, W., & Kim, B. S. (2018). In Climate Change Research, Past and Future 10 Years. Proceedings of KSCC International Conference. Jeju, Republic of Korea.
  • Kondratenko, E. V., Mul, G., Baltrusaitis, J., Larrazabal, G. O., & Perez-Ramirez, J. (2013). Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy & Environmental Science, 6, 3112–3135. doi:10.1039/c3ee41272e
  • Koo, Y., Malik, R., Alvarez, N., White, L., Shanov, V. N., Schulz, M., … Yun, Y. (2014). Aligned carbon nanotube/copper sheets: A new electrocatalyst for CO2 reduction to hydrocarbons. RSC Advances, 4(31), 16362–16367. doi:10.1039/C4RA00618F
  • Korea Carbon Capture and Storage Association. (2015). Analysis of domestic and overseas CO2 utilization technology for creating carbon dioxide utilization industry. Korea Carbon Capture and Storage Association, Republic of Korea. Retrieved from http://www.prism.go.kr/homepage/researchCommon/downloadResearchAttachFile.do;jsessionid=D1ECC5637B87A8758E5D61977F33E73E.node02?work_key=001&file_type=CPR&seq_no=001&pdf_conv_yn=N&research_id=1450000-201500157
  • Kornienko, N., Zhao, Y., Kley, C. S., Zhu, C., Kim, D., Lin, S., … Yang, P. (2015). Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. Journal of the American Chemical Society, 137(44), 14129–14135. doi:10.1021/jacs.5b08212
  • Kortlever, R., Balemans, C., Kwon, Y., & Koper, M. T. M. (2015). Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst. Catalysis Today, 244, 58–62. doi:10.1016/j.cattod.2014.08.001
  • Kortlever, R., Peters, I., Balemans, C., Kas, R., Kwon, Y., Mul, G., & Koper, M. T. M. (2016). Palladium-gold catalyst for the electrochemical reduction of CO2 to C1-C5 hydrocarbons. Chemical Communications, 52(67), 10229–10232. doi:10.1039/C6CC03717H
  • Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F., & Koper, M. T. M. (2015). Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. The Journal of Physical Chemistry Letters, 6(20), 4073–4082. doi:10.1021/acs.jpclett.5b01559
  • Kuhl, K. P., Cave, E. R., Abram, D. N., & Jaramillo, T. F. (2012). New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy & Environmental Science, 5, 7050–7059. doi:10.1039/c2ee21234j
  • Kuhl, K. P., Hatsukade, T., Cave, E. R., Abram, D. N., Kibsgaard, J., & Jaramillo, T. F. (2014). Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. Journal of the American Chemical Society, 136(40), 14107–14113. doi:10.1021/ja505791r
  • Kumar, B., Brian, J. P., Atla, V., Kumari, S., Bertram, K. A., White, R. T., & Spurgeon, J. M. (2016). New trends in the development of heterogeneous catalysts for electrochemical CO2 reduction. Catalysis Today, 270, 19–38. doi:10.1016/j.cattod.2016.02.006
  • Küngas, R., Blennow, P., Heiredal-Clausen, T., Holt, T., Rass-Hansen, J., Primdahl, S., & Hansen, J. B. (2017). eCOs – A commercial CO2 electrolysis system developed by Haldor Topsoe. ECS Transactions, 78(1), 2879–2884. doi:10.1149/07801.2879ecst
  • Kwon, Y., & Lee, J. (2010). Formic acid from carbon dioxide on nanolayered electrocatalyst. Electrocatalysis, 1(2-3), 108–115. doi:10.1007/s12678-010-0017-y
  • Kwon, Y., Lum, Y., Clark, E. L., Ager, J. W., & Bell, A. T. (2016). CO2 electroreduction with enhanced ethylene and ethanol selectivity by nanostructuring polycrystalline Copper. ChemElectroChem, 3(6), 1012–1019. doi:10.1002/celc.201600068
  • Lee, C. H., & Kanan, M. W. (2015). Controlling H+ vs CO2 reduction selectivity on Pb electrodes. ACS Catalysis, 5(1), 465–469. doi:10.1021/cs5017672
  • Lee, H., Kim, S.-K., & Ahn, S. H. (2017). Electrochemical preparation of Ag/Cu and Au/Cu foams for electrochemical conversion of CO2 to CO. Journal of Industrial and Engineering Chemistry, 54, 218–225. doi:10.1016/j.jiec.2017.05.036
  • Lee, J., Kwon, Y., Machunda, R. L., & Lee, H. J. (2009). Electrocatalytic recycling of CO2 and small organic molecules. Chemistry - An Asian Journal, 4(10), 1516–1523. doi:10.1002/asia.200900055
  • Lee, S. Y., Jung, H., Kim, N.-K., Oh, H.-S., Min, B. K., & Hwang, Y. J. (2018). Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. Journal of the American Chemical Society, 140(28), 8681–8689. doi:10.1021/jacs.8b02173
  • Lee, W., Kim, Y. E., Youn, M. H., Jeong, S. K., & Park, K. T. (2018). Catholyte-free electrocatalytic CO2 reduction to formate. Angewandte Chemie International Edition, 57(23), 6883–6887. doi:10.1002/anie.201803501
  • Lei, F., Liu, W., Sun, Y., Xu, J., Liu, K., Liang, L., … Xie, Y. (2016). Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nature Communications, 7(1), 12697.
  • Leung, D. Y. C., Caramanna, G., & Maroto-Valer, M. M. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39, 426–443. doi:10.1016/j.rser.2014.07.093
  • Li, C. W., & Kanan, M. W. (2012). CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. Journal of the American Chemical Society, 134(17), 7231–7234. doi:10.1021/ja3010978
  • Li, F., Chen, L., Knowles, G. P., MacFarlane, D. R., & Zhang, J. (2017). Hierarchical mesoporous SnO2 nanosheets on carbon cloth: A robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angewandte Chemie International Edition, 56(2), 505–509. doi:10.1002/anie.201608279
  • Li, Q., Fu, J., Zhu, W., Chen, Z., Shen, B., Wu, L., … Sun, S. (2017). Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. Journal of the American Chemical Society, 139(12), 4290–4293. doi:10.1021/jacs.7b00261
  • Li, W., Seredych, M., Rodríguez-Castellõn, E., & Bandosz, T. J. (2016). Metal-free nanoporous carbon as a catalyst for electrochemical reduction of CO2 to CO and CH4. ChemSusChem, 9(6), 606–616. doi:10.1002/cssc.201501575
  • Li, Y., Cui, F., Ross, M. B., Kim, D., Sun, Y., & Yang, P. (2017). Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires. Nano Letters, 17(2), 1312–1317. doi:10.1021/acs.nanolett.6b05287
  • Liang, C., Kim, B., Yang, S., Yang, L., Francisco Woellner, C., Li, Z., … Ajayan, P. M. (2018). High efficiency electrochemical reduction of CO2 beyond the two-electron transfer pathway on grain boundary rich ultra-small SnO2 nanoparticles. Journal of Materials Chemistry A, 6(22), 10313–10319. doi:10.1039/C8TA01367E
  • Lim, H.-K., Kwon, Y., Kim, H. S., Jeon, J., Kim, Y.-H., Lim, J.-A., … Kim, H. (2018). Insight into the microenvironments of the metal–ionic liquid interface during electrochemical CO2 reduction. ACS Catalysis, 8(3), 2420–2427. doi:10.1021/acscatal.7b03777
  • Lim, R. J., Xie, M., Sk, M. A., Lee, J.-M., Fisher, A., Wang, X., & Lim, K. H. (2014). A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts. Catalysis Today, 233, 169–180. doi:10.1016/j.cattod.2013.11.037
  • Lin, S., Diercks, C. S., Zhang, Y. B., Kornienko, N., Nichols, E. M., Zhao, Y., … Chang, C. J. (2015). Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science, 349(6253), 1208–1213. doi:10.1126/science.aac8343
  • Liu, Y., Chen, S., Quan, X., & Yu, H. (2015). Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. Journal of the American Chemical Society, 137(36), 11631–11636. doi:10.1021/jacs.5b02975
  • Liu, Y., Fan, M., Zhang, X., Zhang, Q., Guay, D., & Qiao, J. (2017). Design and engineering of urchin-like nanostructured SnO2 catalysts via controlled facial hydrothermal synthesis for efficient electro-reduction of CO2. Electrochimica Acta, 248, 123–132. doi:10.1016/j.electacta.2017.07.140
  • Lobaccaro, P., Singh, M. R., Clark, E. L., Kwon, Y., Bell, A. T., & Ager, J. W. (2016). Effects of temperature and gas-liquid mass transfer on the operation of small electrochemical cells for the quantitative evaluation of CO2 reduction electrocatalysts. Physical Chemistry Chemical Physics, 18(38), 26777–26785. doi:10.1039/C6CP05287H
  • Lu, G., Wang, H., Bian, Z., & Liu, X. (2013). Electrochemical reduction of CO to organic acids by a Pd-MWNTs gas-diffusion electrode in aqueous medium. The Scientific World Journal, 2013, 1. doi:10.1155/2013/424617
  • Lu, Q., & Jiao, F. (2016). Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering. Nano Energy, 29, 439–456. doi:10.1016/j.nanoen.2016.04.009
  • Lu, X., Tan, T. H., Ng, Y. H., & Amal, R. (2016). Highly selective and stable reduction of CO2 to CO by a graphitic carbon nitride/carbon nanotube composite electrocatalyst. Chemistry - A European Journal, 22(34), 11991–11996. doi:10.1002/chem.201601674
  • Lv, J.-J., Jouny, M., Luc, W., Zhu, W., Zhu, J.-J., & Jiao, F. (2018). A highly porous copper electrocatalyst for carbon dioxide reduction. Advanced Materials, 30(49), 1803111. doi:10.1002/adma.201803111
  • Lv, W., Zhou, J., Bei, J., Zhang, R., Wang, L., Xu, Q., & Wang, W. (2017). Electrodeposition of nano-sized bismuth on copper foil as electrocatalyst for reduction of CO2 to formate. Applied Surface Science, 393, 191–196. doi:10.1016/j.apsusc.2016.10.017
  • Ma, M., Djanashvili, K., & Smith, W. A. (2016). Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angewandte Chemie International Edition, 55(23), 6680–6684. doi:10.1002/anie.201601282
  • Ma, M., Hansen, H. A., Valenti, M., Wang, Z., Cao, A., Dong, M., & Smith, W. A. (2017). Electrochemical reduction of CO2 on compositionally variant Au-Pt bimetallic thin films. Nano Energy, 42, 51–57. doi:10.1016/j.nanoen.2017.09.043
  • Ma, S., Lan, Y., Perez, G. M. J., Moniri, S., & Kenis, P. J. A. (2014). Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction. ChemSusChem, 7, 866–874. doi:10.1002/cssc.201300934
  • Ma, S., Liu, J., Sasaki, K., Lyth, S. M., & Kenis, P. J. A. (2017). Carbon foam decorated with silver nanoparticles for electrochemical CO2 conversion. Energy Technology, 5(6), 861–863. doi:10.1002/ente.201600576
  • Ma, S., Sadakiyo, M., Heim, M., Luo, R., Haasch, R. T., Gold, J. I., … Kenis, P. J. A. (2017). Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. Journal of the American Chemical Society, 139(1), 47–50. doi:10.1021/jacs.6b10740
  • Manthiram, K., Beberwyck, B. J., & Alivisatos, A. P. (2014). Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. Journal of the American Chemical Society, 136(38), 13319–13325. doi:10.1021/ja5065284
  • Mantra Venture Group. (2014). ERC and MRFC Technology. Mantra Venture Group, Surrey, Canada. Retrieved from https://1stdirectory.co.uk/_assets/files_comp/9a5be6a3-bb42-4244-9780-2f9a2a7dc3dc.pdf
  • Marepally, B. C., Ampelli, C., Genovese, C., Saboo, T., Perathoner, S., Wisser, F. M., … Centi, G. (2017). Enhanced formation of > C1 Products in electroreduction of CO2 by adding a CO2 adsorption component to a gas-diffusion layer-type catalytic electrode. ChemSuschem, 10(22), 4442–4446. doi:10.1002/cssc.201701506
  • Martin, A. J., Larrazabal, G. O., & Perez-Ramirez, J. (2015). Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: Lessons from water electrolysis. Green Chemistry, 17, 5114–5130.
  • Masel, R., Ni, R., Liu, Z., Chen, Q., Kutz, R., Nereng, L., … Lewinski, K. (2014). Unlocking the potential of CO2 conversion to fuels and chemicals as an economically viable route to CCR. Energy Procedia, 63, 7959–7962. doi:10.1016/j.egypro.2014.11.832
  • Min, X., & Kanan, M. W. (2015). Pd-catalyzed electrohydrogenation of carbon dioxide to formate: High mass activity at low overpotential and identification of the deactivation pathway. Journal of the American Chemical Society, 137(14), 4701–4708. doi:10.1021/ja511890h
  • Mistry, H., Varela, A. S., Bonifacio, C. S., Zegkinoglou, I., Sinev, I., Choi, Y. W., … Cuenya, B. R. (2016). Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nature Communications, 7, 12123.
  • Monzó, J., Malewski, Y., Kortlever, R., Vidal-Iglesias, F. J., Solla-Gullón, J., Koper, M. T. M., & Rodriguez, P. (2015). Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction. Journal of Materials Chemistry A, 3(47), 23690–23698. doi:10.1039/C5TA06804E
  • Ogura, K., Oohara, R., & Kudo, Y. (2005). Reduction of CO2 to ethylene at three-phase interface effects of electrode substrate and catalytic coating. Journal of the Electrochemical Society, 152(12), D213–D219. doi:10.1149/1.2073115
  • Pang, Y., Burdyny, T., Dinh, C.-T., Kibria, M. G., Fan, J. Z., Liu, M., … Sinton, D. (2017). Joint tuning of nanostructured Cu-oxide morphology and local electrolyte programs high-rate CO2 reduction to C2H4. Green Chemistry, 19(17), 4023–4030. doi:10.1039/C7GC01677H
  • Prakash, G. K. S., Viva, F. A., & Olah, G. A. (2013). Electrochemical reduction of CO2 over Sn-Nafion® coated electrode for a fuel-cell-like device. Journal of Power Sources, 223, 68–73. doi:10.1016/j.jpowsour.2012.09.036
  • Qiao, J., Liu, Y., & Zhang, J. (2016). Electrochemical reduction of carbon dioxide: Fundamentals and technologies. Boca Raton, FL: CRC Press.
  • Qiao, J., Liu, Y., Hong, F., & Zhang, J. (2014). A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chemical Society Reviews, 43(2), 631–675. doi:10.1039/C3CS60323G
  • Qiu, Y. L., Zhong, H. X., Zhang, T. T., Xu, W. B., Li, X. F., & Zhang, H. M. (2017). Copper electrode fabricated via pulse electrodeposition: Toward high methane selectivity and activity for CO2 electroreduction. ACS Catalysis, 7(9), 6302–6310. doi:10.1021/acscatal.7b00571
  • Rahaman, M., Dutta, A., Zanetti, A., & Broekmann, P. (2017). Electrochemical reduction of CO2 into multicarbon alcohols on activated Cu mesh catalysts: An identical location (IL) study. ACS Catalysis, 7(11), 7946–7956. doi:10.1021/acscatal.7b02234
  • Rasul, S., Anjum, D. H., Jedidi, A., Minenkov, Y., Cavallo, L., & Takanabe, K. (2015). A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angewandte Chemie International Edition, 54(7), 2146–2150. doi:10.1002/anie.201410233
  • Rees, N. V., & Compton, R. G. (2011). Sustainable energy: A review of formic acid electrochemical fuel cells. Journal of Solid State Electrochemistry, 15(10), 2095–2100. doi:10.1007/s10008-011-1398-4
  • Ren, D., Deng, Y., Handoko, A. D., Chen, C. S., Malkhandi, S., & Yeo, B. S. (2015). Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catalysis, 5(5), 2814–2821. doi:10.1021/cs502128q
  • Reske, R., Mistry, H., Behafarid, F., Roldan Cuenya, B., & Strasser, P. (2014). Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. Journal of the American Chemical Society, 136(19), 6978–6986. doi:10.1021/ja500328k
  • Rosen, J., Hutchings, G. S., Lu, Q., Forest, R. V., Moore, A., & Jiao, F. (2015). Electrodeposited Zn Dendrites with Enhanced CO Selectivity for Electrocatalytic CO2 Reduction. ACS Catalysis, 5(8), 4586–4591. doi:10.1021/acscatal.5b00922
  • Saberi Safaei, T., Mepham, A., Zheng, X., Pang, Y., Dinh, C.-T., Liu, M., … Sargent, E. H. (2016). High-density nanosharp microstructures enable efficient CO2 electroreduction. Nano Letters, 16(11), 7224–7228. doi:10.1021/acs.nanolett.6b03615
  • Salvatore, D. A., Weekes, D. M., He, J., Dettelbach, K. E., Li, Y. C., Mallouk, T. E., & Berlinguette, C. P. (2018). Electrolysis of gaseous CO2 to CO in a flow cell with a bipolar membrane. ACS Energy Letters, 3(1), 149–154. doi:10.1021/acsenergylett.7b01017
  • Schizodimou, A., & Kyriacou, G. (2012). Acceleration of the reduction of carbon dioxide in the presence of multivalent cations. Electrochimica Acta, 78, 171–176. doi:10.1016/j.electacta.2012.05.118
  • Sekar, P., Calvillo, L., Tubaro, C., Baron, M., Pokle, A., Carraro, F., … Agnoli, S. (2017). Cobalt spinel nanocubes on N-doped graphene: A synergistic hybrid electrocatalyst for the highly selective reduction of carbon dioxide to formic acid. ACS Catalysis, 7(11), 7695–7703. doi:10.1021/acscatal.7b02166
  • Sekimoto, T., Hashiba, H., Deguchi, M., Yotsuhashi, S., Masui, T., Kuramata, A., & Yamakoshi, S. (2016). Electrochemical application of Ga2O3 and related materials: CO2-to-HCOOH conversion. Japanese Journal of Applied Physics, 55(12), 1202B1.
  • Sharma, P. P., & Zhou, X.-D. (2017). Electrocatalytic conversion of carbon dioxide to fuels: A review on the interaction between CO2 and the liquid electrolyte. Wiley Interdisciplinary Reviews: Energy and Environment, 6(4), e239. doi:10.1002/wene.239
  • Sharma, P. P., Wu, J., Yadav, R. M., Liu, M., Wright, C. J., Tiwary, C. S., … Zhou, X.-D. (2015). Nitrogen‐doped carbon nanotube arrays for high‐efficiency electrochemical reduction of CO2: On the understanding of defects, defect density, and selectivity. Angewandte Chemie International Edition, 54(46), 13701–13705. doi:10.1002/anie.201506062
  • Shen, J., Kortlever, R., Kas, R., Birdja, Y. Y., Diaz-Morales, O., Kwon, Y., … Koper, M. T. M. (2015). Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nature Communications, 6(1), 8177.
  • Shi, G., Yu, L., Ba, X., Zhang, X., Zhou, J., & Yu, Y. (2017). Copper nanoparticle interspersed MoS2 nanoflowers with enhanced efficiency for CO2 electrochemical reduction to fuel. Dalton Transactions, 46(32), 10569–10577. doi:10.1039/C6DT04381J
  • Simakov, D. S. A. (2017). Renewable synthetic fuels and chemicals from carbon dioxide. Basel, Switzerland. SpringerBriefs in Energy.
  • Singh, M. R., Clark, E. L., & Bell, A. T. (2015). Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Physical Chemistry Chemical Physics, 17(29), 18924–18936. doi:10.1039/C5CP03283K
  • Singh, M. R., Kwon, Y., Lum, Y., Ager, J. W., & Bell, A. T. (2016). Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. Journal of the American Chemical Society, 138(39), 13006–13012. doi:10.1021/jacs.6b07612
  • Song, H., Im, M., Song, J. T., Lim, J.-A., Kim, B.-S., Kwon, Y., … Oh, J. (2018). Effect of mass transfer and kinetics in ordered Cu-mesostructures for electrochemical CO2 reduction. Applied Catalysis B: Environmental, 232, 391–396. doi:10.1016/j.apcatb.2018.03.071
  • Spurgeon, J. M., & Kumar, B. (2018). A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy & Environmental Science, 11, 1536–1551. doi:10.1039/C8EE00097B
  • Sreekanth, N., Nazrulla, M. A., Vineesh, T. V., Sailaja, K., & Phani, K. L. (2015). Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate. Chemical Communications, 51(89), 16061–16064. doi:10.1039/C5CC06051F
  • Sridhar, N., Hill, D., Agarwal, A., Zhai, Y., & Hektor, E. (2011). Carbon dioxide utilization, electrochemical conversion of CO2-opportunities and challenges. Position paper 07. Høvik, Norway. Det Norske Veritas.
  • Stambouli, A. B., & Traversa, E. (2002). Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy. Renewable and Sustainable Energy Reviews, 6(5), 433–455. doi:10.1016/S1364-0321(02)00014-X
  • Strasser, P., & Ogasawara, H. (2008). Chemical bonding at surfaces and interfaces (pp. 397–455). Amsterdam, Netherlands. Elsevier.
  • Sun, K., Wu, L., Qin, W., Zhou, J., Hu, Y., Jiang, Z., … Wang, Z. (2016). Enhanced electrochemical reduction of CO2 to CO on Ag electrocatalysts with increased unoccupied density of states. Journal of Materials Chemistry A, 4(32), 12616–12623. doi:10.1039/C6TA04325A
  • Sun, Z., Ma, T., Tao, H., Fan, Q., & Han, B. (2017). Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem, 3(4), 560–587. doi:10.1016/j.chempr.2017.09.009
  • Tang, W., Peterson, A. A., Varela, A. S., Jovanov, Z. P., Bech, L., Durand, W. J., … Chorkendorff, I. (2012). The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Physical Chemistry Chemical Physics, 14(1), 76–81. doi:10.1039/C1CP22700A
  • Todoroki, N., Yokota, N., Nakahata, S., Nakamura, H., & Wadayama, T. (2016). Electrochemical reduction of CO2 on Ni- and Pt-epitaxially grown Cu(111) surfaces. Electrocatalysis, 7(1), 97–103. doi:10.1007/s12678-015-0286-6
  • Varela, A. S., Kroschel, M., Reier, T., & Strasser, P. (2016). Controlling the selectivity of CO2 electroreduction on copper: The effect of the electrolyte concentration and the importance of the local pH. Catalysis Today, 260, 8–13. doi:10.1016/j.cattod.2015.06.009
  • Vasileff, A., Zheng, Y., & Qiao, S. Z. (2017). Carbon solving carbon's problems: Recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Advanced Energy Materials, 7(21), 1700759. doi:10.1002/aenm.201700759
  • Verma, S., Kim, B., Jhong, H. R., Ma, S., & Kenis, P. J. (2016). A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem, 9(15), 1972–1979. doi:10.1002/cssc.201600394
  • Viva, F. A. (2013). Electrochemical reduction of CO2 on metal electrodes. Fundamentals and applications review. Advanced Chemistry Letters, 1(3), 225–236. doi:10.1166/acl.2013.1040
  • Wang, H., Chen, Y., Hou, X., Ma, C., & Tan, T. (2016). Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution. Green Chemistry, 18(11), 3250–3256. doi:10.1039/C6GC00410E
  • Weekes, D. M., Salvatore, D. A., Reyes, A., Huang, A., & Berlinguette, C. P. (2018). Electrolytic CO2 reduction in a flow cell. Accounts of Chemical Research, 51(4), 910–918. doi:10.1021/acs.accounts.8b00010
  • Whipple, D. T., & Kenis, P. J. A. (2010). Prospects of CO2 utilization via firect heterogeneous electrochemical reduction. The Journal of Physical Chemistry Letters, 1(24), 3451–3458. doi:10.1021/jz1012627
  • Won, D. H., Choi, C. H., Chung, J., Chung, M. W., Kim, E.-H., & Woo, S. I. (2015). Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO2. ChemSusChem, 8(18), 3092–3098. doi:10.1002/cssc.201500694
  • Wu, J., Liu, M., Sharma, P. P., Yadav, R. M., Ma, L., Yang, Y., … Ajayan, P. M. (2016). Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam. Nano Letters, 16(1), 466–470. doi:10.1021/acs.nanolett.5b04123
  • Wu, J., Ma, S., Sun, J., Gold, J. I., Tiwary, C., Kim, B., … Ajayan, P. M. (2016). A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nature Communications, 7(1), 13869.
  • Wu, J., Risalvato, F., & Zhou, X. D. (2012). Effects of the electrolyte on electrochemical reduction of CO2 on Sn electrode. ECS Transactions, 41, 49–60.
  • Wu, J., Yadav, R. M., Liu, M., Sharma, P. P., Tiwary, C. S., Ma, L., … Ajayan, P. M. (2015). Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano, 9(5), 5364–5371. doi:10.1021/acsnano.5b01079
  • Xie, J.-F., Huang, Y.-X., Li, W.-W., Song, X.-N., Xiong, L., & Yu, H.-Q. (2014). Efficient electrochemical CO2 reduction on a unique chrysanthemum-like Cu nanoflower electrode and direct observation of carbon deposite. Electrochimica Acta, 139, 137–144. doi:10.1016/j.electacta.2014.06.034
  • Xu, J., Zhang, B., Wang, B., Wu, K., Peng, Z., Li, Q., … Su, D. S. (2017). Decisive intermediates responsible for the carbonaceous products of CO2 electro-reduction on nitrogen-doped sp2 nanocarbon catalysts in NaHCO3 aqueous electrolyte. ChemElectroChem, 4(6), 1274–1278. doi:10.1002/celc.201700104
  • Yadav, V. S. K., & Purkait, M. K. (2016). Concurrent electrochemical CO2 reduction to HCOOH and methylene blue removal on metal electrodes. RSC Advances, 6(47), 40916–40922. doi:10.1039/C6RA04549A
  • Yano, H., Tanaka, T., Nakayama, M., & Ogura, K. (2004). Selective electrochemical reduction of CO2 to ethylene at a three-phase interface on copper(I) halide-confined Cu-mesh electrodes in acidic solutions of potassium halides. Journal of Electroanalytical Chemistry, 565(2), 287–293. doi:10.1016/j.jelechem.2003.10.021
  • Yin, Z., Gao, D., Yao, S., Zhao, B., Cai, F., Lin, L., … Bao, X. (2016). Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. Nano Energy, 27, 35–43. doi:10.1016/j.nanoen.2016.06.035
  • Zeng, J., Bejtka, K., Ju, W., Castellino, M., Chiodoni, A., Sacco, A., … Pirri, C. F. (2018). Advanced Cu-Sn foam for selectively converting CO2 to CO in aqueous solution. Applied Catalysis B: Environmental, 236, 475–482. doi:10.1016/j.apcatb.2018.05.056
  • Zhang, H., Ma, Y., Quan, F., Huang, J., Jia, F., & Zhang, L. (2014). Selective electro-reduction of CO2 to formate on nanostructured Bi from reduction of BiOCl nanosheets. Electrochemistry Communications, 46, 63–66. doi:10.1016/j.elecom.2014.06.013
  • Zhang, L., Zhao, Z.-J., & Gong, J. (2017). Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angewandte Chemie International Edition, 56(38), 11326–11353. doi:10.1002/anie.201612214
  • Zhang, S., Kang, P., & Meyer, T. J. (2014). Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. Journal of the American Chemical Society, 136(5), 1734–1737. doi:10.1021/ja4113885
  • Zhang, S., Kang, P., Ubnoske, S., Brennaman, M. K., Song, N., House, R. L., … Meyer, T. J. (2014). Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. Journal of the American Chemical Society, 136(22), 7845–7848. doi:10.1021/ja5031529
  • Zhang, T., Li, X., Qiu, Y., Su, P., Xu, W., Zhong, H., & Zhang, H. (2018). Multilayered Zn nanosheets as an electrocatalyst for efficient electrochemical reduction of CO2. Journal of Catalysis, 357, 154–162. doi:10.1016/j.jcat.2017.11.003
  • Zhang, T., Zhong, H., Qiu, Y., Li, X., & Zhang, H. (2016). Zn electrode with a layer of nanoparticles for selective electroreduction of CO2 to formate in aqueous solutions. Journal of Materials Chemistry A, 4(42), 16670–16676. doi:10.1039/C6TA07000K
  • Zhang, X., Huang, B., Sun, C., Lu, W., Tian, Z. Q., Shen, P. K., … Macfarlane, D. R. (2018). Hierarchically ordered nanochannel array membrane reactor with three-dimensional electrocatalytic interfaces for electrohydrogenation of CO2 to alcohol. ACS Energy Letters, 3(11), 2649–2655. doi:10.1021/acsenergylett.8b01521
  • Zhang, X., Lei, T., Liu, Y., & Qiao, J. (2017). Enhancing CO2 electrolysis to formate on facilely synthesized Bi catalysts at low overpotential. Applied Catalysis B: Environmental, 218, 46–50. doi:10.1016/j.apcatb.2017.06.032
  • Zhao, G., Huang, X., Wang, X., & Wang, X. (2017). Progress in catalyst exploration for heterogeneous CO2 reduction and utilization: A critical review. Journal of Materials Chemistry A, 5(41), 21625–21649. doi:10.1039/C7TA07290B
  • Zhao, K., Liu, Y., Quan, X., Chen, S., & Yu, H. (2017). CO2 Electroreduction at low overpotential on oxide-derived Cu/Carbons fabricated from metal organic framework. ACS Applied Materials & Interfaces, 9(6), 5302–5311. doi:10.1021/acsami.6b15402
  • Zhao, Y., Liang, J., Wang, C., Ma, J., & Wallace, G. G. (2018). Tunable and efficient tin modified nitrogen‐doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide. Advanced Energy Materials, 8(10), 1702524. doi:10.1002/aenm.201702524
  • Zhao, Y., Wang, C., & Wallace, G. G. (2016). Tin nanoparticles decorated copper oxide nanowires for selective electrochemical reduction of aqueous CO2 to CO. Journal of Materials Chemistry A, 4(27), 10710–10718. doi:10.1039/C6TA04155H
  • Zheng, X., De Luna, P., García de Arquer, F. P., Zhang, B., Becknell, N., Ross, M. B., … Sargent, E. H. (2017). Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule, 1(4), 794–805. doi:10.1016/j.joule.2017.09.014
  • Zheng, Y., Wang, J., Yu, B., Zhang, W., Chen, J., Qiao, J., & Zhang, J. (2017). A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chemical Society Reviews, 46(5), 1427–1463. doi:10.1039/C6CS00403B
  • Zhong, H., Fujii, K., Nakano, Y., & Jin, F. (2015). Effect of CO2 bubbling into aqueous solutions used for electrochemical reduction of CO2 for energy conversion and storage. The Journal of Physical Chemistry C, 119(1), 55–61. doi:10.1021/jp509043h
  • Zhu, W., Tackett, B. M., Chen, J. G., & Jiao, F. (2018). Bimetallic Electrocatalysts for CO2 Reduction. Topics in Current Chemistry, 376(6), 41.
  • Zhu, W., Zhang, L., Yang, P., Chang, X., Dong, H., Li, A., … Gong, J. (2018). Morphological and compositional design of Pd–Cu bimetallic nanocatalysts with controllable product selectivity toward CO2 electroreduction. Small, 14(7), 1703314. doi:10.1002/smll.201703314
  • Zhu, W., Zhang, L., Yang, P., Hu, C., Dong, H., Zhao, Z.-J., … Gong, J. (2018). Formation of enriched vacancies for enhanced CO2 electrocatalytic reduction over AuCu alloys. ACS Energy Letters, 3(9), 2144–2149. doi:10.1021/acsenergylett.8b01286
  • Zhu, W., Zhang, L., Yang, P., Hu, C., Luo, Z., Chang, X., … Gong, J. (2018). Low-coordinated edge sites on ultrathin palladium nanosheets boost carbon dioxide electroreduction performance. Angewandte Chemie International Edition, 57(36), 11544–11548. doi:10.1002/anie.201806432
  • Zhu, W., Zhang, Y. J., Zhang, H., Lv, H., Li, Q., Michalsky, R., … Sun, S. (2014). Active and selective conversion of CO2 to CO on ultrathin Au nanowires. Journal of the American Chemical Society, 136(46), 16132–16135. doi:10.1021/ja5095099
  • Zou, X., Liu, M., Wu, J., Ajayan, P. M., Li, J., Liu, B., & Yakobson, B. I. (2017). How nitrogen-doped graphene quantum dots catalyze electroreduction of CO2 to hydrocarbons and oxygenates. ACS Catalysis, 7(9), 6245–6250. doi:10.1021/acscatal.7b01839

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.