587
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Crashworthiness design of crash box filled with negative Poisson's ratio based on horn structure

, , &
Pages 6403-6420 | Received 09 Jun 2021, Accepted 05 Sep 2021, Published online: 07 Feb 2022
 

Abstract

In order to improve the crashworthiness of the crash box, the cattle horn is selected as a bionic object. A crash box filled with negative Poisson's ratio honeycomb based on horn structure was designed by extracting its excellent structural characteristics of impact resistance. The axial deformation modes and energy absorption characteristics of bionic crash box are investigated by means of finite element method, and compared with square crash box, diagonal crash box and side-to-side crash box. Under axial impact, the horn-bionic crash box shows significantly better load-carrying and energy-absorbing capacity than the square crash box and the diagonal crash box. On this basis, the thickness parameters, multi-objective optimization design and structure improvement design of horn-bionic crash box are studied successively in this work. The results show that the improved bionic crash box based on horn structure has a typical progressive shrinkage deformation mode. Its SEA reaches 29.9 kJ/kg, which is 2.5 times that of the square crash box, and its PCF is also greatly reduced from 542.4 kN to 391.1 kN. Therefore, the methods of structural improvement such as pre-deformed treatment, constraint beam adjustment and shortening the NPR core can effectively reduce the PCF of the crash box, and improve its energy absorption capacity, so as to obtain better comprehensive crashworthiness. Introducing the key characteristics of the horn structure into the design of the car crash box can effectively improve structural crashworthiness and provide new design guidance for the other energy-absorption components of vehicle.

Disclosure statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Funding

The support of this work by the National Natural Science Foundation of China (51975438, U1564202)is greatly appreciated. The work was also supported by the 111 Project (B17034).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 423.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.