591
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Crashworthiness design of crash box filled with negative Poisson's ratio based on horn structure

, , &
Pages 6403-6420 | Received 09 Jun 2021, Accepted 05 Sep 2021, Published online: 07 Feb 2022

Reference

  • S.-J. Lee, H.-A. Lee, S.-I Yi, D.-S. Kim, H. W. Yang, and G.-J. Park., Design flow for the crash box in a vehicle to maximize energy absorption, Proc Inst of Mech. Eng. Part D J. Automobile Eng., vol. 227, no. 2, pp. 179–200, 2013. DOI: 10.1177/0954407012451545.
  • N.A.Z. Abdullah, M.S.M. Sani, M.S. Salwani, and N.A. Husain., A review on crashworthiness studies of crash box structure, Thin-Walled Struct., vol. 153, pp. 106795, 2020. DOI: 10.1016/j.tws.2020.106795.
  • F. Sun, C. Lai, and H. Fan, In-plane compression behavior and energy absorption of hierarchical triangular lattice structures, Mater. Des., vol. 100, pp. 280–290, 2016. DOI: 10.1016/j.matdes.2016.03.023.
  • W. Chen and T. Wierzbicki, Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption, Thin-Walled Struct., vol. 39, no. 4, pp. 287–306, 2001. DOI: 10.1016/S0263-8231(01)00006-4.
  • M. Ali, E. Ohioma, F. Kraft, and K. Alam., Theoretical, numerical, and experimental study of dynamic axial crushing of thin walled pentagon and cross-shape tubes, Thin-Walled Struct., vol. 94, pp. 253–272, 2015. DOI: 10.1016/j.tws.2015.04.007.
  • W. Abramowicz, Thin-walled structures as impact energy absorbers, Thin-Walled Struct., vol. 41, no. 2-3, pp. 91–107, 2003. DOI: 10.1016/S0263-8231(02)00082-4.
  • J. Wang, Y. Zhang, N. He, and C. Wang., Crashworthiness behavior of Koch fractal structures, Mater. Des., vol. 144, pp. 229–244, 2018. DOI: 10.1016/j.matdes.2018.02.035.
  • E.-S. Mahdi and H.E. Kadi, Crushing behavior of laterally compressed composite elliptical tubes: experiments and predictions using artificial neural networks, Compos. Struct., vol. 83, no. 4, pp. 399–412, 2008. DOI: 10.1016/j.compstruct.2007.05.009.
  • W. Chen, Experimental and numerical study on bending collapse of aluminum foam-filled hat profiles, Int. J. Solids Struct., vol. 38, no. 44-45, pp. 7919–7944, 2001. DOI: 10.1016/S0020-7683(01)00094-4.
  • M. Langseth and O.S. Hopperstad, Static and dynamic axial crushing of square thin-walled aluminium extrusions, Int. J. Impact Eng., vol. 18, no. 7-8, pp. 949–968, 1996. DOI: 10.1016/S0734-743X(96)00025-5.
  • G. Zheng, T. Pang, G. Sun, S. Wu, and Q. Li., Theoretical, numerical, and experimental study on laterally variable thickness (LVT) multi-cell tubes for crashworthiness, Int. J. Mech. Sci., vol. 118, pp. 283–297, 2016. DOI: 10.1016/j.ijmecsci.2016.09.015.
  • M. Yamashita, M. Gotoh, and Y. Sawairi, Axial crush of hollow cylindrical structures with various polygonal cross-sections, J. Mater. Process. Tech., vol. 140, no. 1-3, pp. 59–64, 2003. DOI: 10.1016/S0924-0136(03)00821-5.
  • Y. Zhang, X. Xua, J. Wang, T. Chen, and C. Wang., Crushing analysis for novel bio-inspired hierarchical circular structures subjected to axial load, Int. J. Mech. Sci., vol. 140, pp. 407–431, 2018. DOI: 10.1016/j.ijmecsci.2018.03.015.
  • J. Fang, Y. Gao, G. Sun, N. Qiu, and Q. Li., On design of multi-cell tubes under axial and oblique impact loads, Thin-Walled Struct., vol. 95, pp. 115–126, 2015. DOI: 10.1016/j.tws.2015.07.002.
  • T. Tran, S. Hou, X. Han, W. Tan, and N. Nguyen., Theoretical prediction and crashworthiness optimization of multi-cell triangular tubes, Thin-Walled Struct., vol. 82, pp. 183–195, 2014. DOI: 10.1016/j.tws.2014.03.019.
  • X. Zhang, G. Cheng, and H. Zhang, Theoretical prediction and numerical simulation of multi-cell square thin-walled structures, Thin-Walled Struct., vol. 44, no. 11, pp. 1185–1191, 2006. DOI: 10.1016/j.tws.2006.09.002.
  • A.A. Nia and J.H. Hamedani, Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries, Thin-Walled Struct., vol. 48, no. 12, pp. 946–954, 2010.
  • G.M. Nagel and D.P. Thambiratnam, A numerical study on the impact response and energy absorption of tapered thin-walled tubes, Int. J. Mech. Sci., vol. 46, no. 2, pp. 201–216, 2004. DOI: 10.1016/j.ijmecsci.2004.03.006.
  • X. Xu, Y. Zhang, J. Wang, F. Jiang, and C. Wang., Crashworthiness design of novel hierarchical hexagonal columns, Compos. Struct., vol. 194, pp. 36–48, 2018. DOI: 10.1016/j.compstruct.2018.03.099.
  • Z. Wang, Z. Li, C. Shi, and W. Zhou, Theoretical and numerical analysis of the folding mechanism of vertex-based hierarchical honeycomb structure, Mech. Adv. Mater. Struct., vol. 27, no. 10, pp. 789–799, 2020. DOI: 10.1080/15376494.2019.1665760.
  • Z. Wang, Z. Li, C. Shi, and W. Zhou, Mechanical performance of vertex-based hierarchicalvs square thin-walled multi-cell structure, Thin-Walled Struct., vol. 134, pp. 102–110, 2019.. DOI: 10.1016/j.tws.2018.09.017.
  • D. Zhang, Q. Fei, J. Liu, D. Jiang, and Y. Li, Crushing of vertex-based hierarchical honeycombs with triangularsubstructures, Thin-Walled Struct., vol. 146, pp. 106436, 2020. DOI: 10.1016/j.tws.2019.106436.
  • D. Zhang, G. Lu, D. Ruan, and Q. Fei, Energy absorption in the axial crushing of hierarchical circulartubes, Int. J. Mech. Sci., vol. 171, pp. 105403, 2020. DOI: 10.1016/j.ijmecsci.2019.105403.
  • E. Acar, M. Altin, and M.A. Güler, Evaluation of various multi-cell design concepts for crashworthiness design of thin-walled aluminum tubes, Thin-Walled Struct., vol. 142, pp. 227–235, 2019. DOI: 10.1016/j.tws.2019.05.012.
  • J. Song, Y. Chen, and G. Lu, Axial crushing of thin-walled structures with origami patterns, Thin-Walled Struct., vol. 54, pp. 65–71, 2012. DOI: 10.1016/j.tws.2012.02.007.
  • N. Qiu, Y. Gao, J. Fang, G. Sun, and N. Kim., Topological design of multi-cell hexagonal tubes under axial and lateral loading cases using a modified particle swarm algorithm, Appl. Math. Modell., vol. 53, pp. 567–583, 2018. DOI: 10.1016/j.apm.2017.08.017.
  • G. Zhu, Z. Wang, X. Huo, A. Cheng, G. Li, and C. Zhou., Experimental and numerical investigation into axial compressive behaviour of thin-walled structures filled with foams and composite skeleton, Int. J. Mech. Sci., vol. 122, pp. 104–119, 2017. DOI: 10.1016/j.ijmecsci.2016.12.019.
  • R. Raman, K. Jayanth, I. Sarkar, and K. Ravi., Analyzing the effect of carbon fiber reinforced polymer on the crashworthiness of aluminum square hollow beam for crash box application, IOP Conf. Ser Mater. Sci. Eng., vol. 263, pp. 062068, 2017. DOI: 10.1088/1757-899X/263/6/062068.
  • M.S.I. Shaik Dawood, ALAhmad Ghazilan, and Q.H. Shah, Finite element analysis of a composite crash box subjected to low velocity impact, IOP Conf. Ser. Mater. Sci. Eng., vol. 184, no. 1, pp. 012017, 2017. DOI: 10.1088/1757-899X/184/1/012017.
  • Abbas Niknejad, Hassan Assaee, SeyedAli Elahi, and Ali Golriz, Flattening process of empty and polyurethane foam-filled E-glass/vinylester composite tubes-An experimental study, Compos. Struct., vol. 100, pp. 479–492, 2013. DOI: 10.1016/j.compstruct.2013.01.009.
  • H. Saeidi Googarchin, M. Pasandidehpoor, A. Mahmoodi, and M.H. Shojaeefard, Energy absorption analysis for tapered multi-cell tubes improved by foams: theoretical development and numerical simulation, Compos. Struct., vol. 207, pp. 213–222, 2019. DOI: 10.1016/j.compstruct.2018.09.032.
  • M. Costas, D. Morin, M. Langseth, J. Díaz, and L. Romera, Static crushing of aluminium tubes filled with PET foam and a GFRP skeleton. Numerical modelling and multiobjective optimization, Int. J. Mech. Sci., vol. 131-132, pp. 205–217, 2017. DOI: 10.1016/j.ijmecsci.2017.07.004.
  • JulianFV. Vincent, OlgaA. Bogatyreva, NikolajR. Bogatyrev, Adrian Bowyer, and Anja-Karina Pahl, Biomimetics: its practice and theory, J. R. Soc. Interface., vol. 3, no. 9, pp. 471–482, 2006. DOI: 10.1098/rsif.2006.0127.
  • A.M. Wilson, M.P. McGuigan, A. Su, and A.J. van Den Bogert, Horses damp the spring in their step, Nature., vol. 414, no. 6866, pp. 895–899, 2001. DOI: 10.1038/414895a.
  • B. Bhushan, Introduction: biomimetics: lessons from nature-an overview, Philos. Trans. Math. Phys. Eng. Sci., vol. 367, no. 1893, pp. 1445–1486, 2009.
  • Yang Jie, Qianwen Jiang, Yue Zhang, Ning Wang, and Xia Cao, A structural bionic design: from electric organs to systematic triboelectric generators, Nano Energy., vol. 27, pp. 554–560, 2016. DOI: 10.1016/j.nanoen.2016.07.028.
  • X. Guo, X. Dong, and Z. Yu, Study on the mechanical properties of bionic protection and self-recovery structures, Materials., vol. 13, no. 2, pp. 389, 2020. DOI: 10.3390/ma13020389.
  • J. Song, S. Xu, H. Wang, X. Wu, and M. Zou., Bionic design and multi-objective optimization for variable wall thickness tube inspired bamboo structures, Thin-Walled Struct., vol. 125, pp. 76–88, 2018. DOI: 10.1016/j.tws.2018.01.010.
  • C. Wang, Y. Li, W. Zhao, S. Zou, G. Zhou, and Y. Wang., Structure design and multi-objective optimization of a novel crash box based on biomimetic structure, Int. J. Mech. Sci., vol. 138-139, pp. 489–501, 2018. DOI: 10.1016/j.ijmecsci.2018.01.032.
  • Q. He, J. Feng, Y. Chen, and H. Zhou., Mechanical properties of spider-web hierarchical honeycombs subjected to out-of-plane impact loading, J. Sandwich Struct. Mater., vol. 22, no. 3, pp. 771–796, 2020. DOI: 10.1177/1099636218772295.
  • J. Xiang and J. Du, Energy absorption characteristics of bio-inspired honeycomb structure under axial impact loading, Mater. Sci. Eng. A., vol. 696, pp. 283–289, 2017. DOI: 10.1016/j.msea.2017.04.044.
  • Z. Li, L. Duan, T. Chen, and Z. Hu., Crashworthiness analysis and multi-objective design optimization of a novel lotus root filled tube (LFT), Struct. Multidisc. Optim., vol. 57, no. 2, pp. 865–875, 2018. DOI: 10.1007/s00158-017-1782-5.
  • T. Xu, N. Liu, Z. Yu, T. Xu, and M. Zou., Crashworthiness design for bionic bumper structures inspired by cattail and bamboo, Appl. Bionics Biomech., vol. 2017, pp. 1–9, 2017.
  • Y. Xiao, H. Yin, H. Fang, and G. Wen., Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading, Int. J. Mech Mater. Des., vol. 12, no. 4, pp. 1–14, 2016.
  • C. Wang, G. Lu, W. Zhao, and Y. Wang., Modeling and multi-objective optimization of a bionic crash box with folding deformation, Struct. Multidisc. Optim., vol. 61, no. 1, pp. 283–299, 2020. DOI: 10.1007/s00158-019-02360-1.
  • T. Wierzbicki and W. Abramowicz, On the crushing mechanics of thin-walled structures, Int. J. Mech. Sci., vol. 50, no. 4a, pp. 727–734, 1983. DOI: 10.1115/1.3167137.
  • S. Xie, W. Yang, N. Wang, and H. Li, Crashworthiness analysis of multi-cell square tubes under axial loads, Int. J. Mech. Sci., vol. 121, pp. 106–118, 2017. DOI: 10.1016/j.ijmecsci.2016.12.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.