702
Views
28
CrossRef citations to date
0
Altmetric
Reviews

Hollow and Vesicle Particles from Macromolecules with Amphiphilic Monomer Units

ORCID Icon & ORCID Icon
Pages 625-650 | Received 18 Oct 2018, Accepted 19 Mar 2019, Published online: 22 Apr 2019
 

Abstract

Amphiphilic monomer units contain both hydrophobic and hydrophilic groups. They are characterized by affinity and antagonism simultaneously to both polar and nonpolar solvents, tend to settle themselves at solvent interfaces rather than in the bulk of the solvent and, thus, possess effective surface activity. For this reason, in selective solvents the macromolecules with amphiphilic monomer units self-assemble to complex morphologies with enlarged surface which could be similar to those formed by low-molecular surfactants, lipids and amphiphilic diblock-copolymers. In literature, macromolecules with amphiphilic monomer units are also referred to as polymer amphiphiles. When they consist of identical amphiphilic monomer units, they are called amphiphilic homopolymers. The article aims to review the macromolecular self-assembly driven by amphiphilicity of monomer units containing both solvophobic and solvophilic (hydrophobic and hydrophilic) groups. The particular attention is paid to the situation when such macromolecules assemble into the hollow and vesicle-like particles being especially prospective for different applications. We present the current state of experimental, computational and analytical research in this field and reveal the conditions favoring the formation of vesicles with thin (mono-, bi- or multilayer) membranes.

Acknowledgements

This research was carried out in A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences.

Additional information

Funding

This research was supported financially by Russian Science Foundation (project number 14-13-00745)

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.