704
Views
28
CrossRef citations to date
0
Altmetric
Reviews

Hollow and Vesicle Particles from Macromolecules with Amphiphilic Monomer Units

ORCID Icon & ORCID Icon
Pages 625-650 | Received 18 Oct 2018, Accepted 19 Mar 2019, Published online: 22 Apr 2019

References

  • Vasilevskaya, V. V.; Khalatur, P. G.; Khokhlov, A. R. “Conformational polymorphism of amphiphilic polymers in a poor solvent,” Macromolecules 2003, 36, 10103–10111. DOI: 10.1021/ma0350563.
  • Kale, T. S.; Klaikherd, A.; Popere, B.; Thayumanavan, S. “Supramolecular assemblies of amphiphilic homopolymers,” Langmuir 2009, 25, 9660–9670. DOI: 10.1021/la900734d.
  • Zhu, Y.; Yang, B.; Chen, S.; Du, J. “Polymer vesicles: Mechanism, preparation, application, and responsive behavior,” Prog. Polym. Sci. 2017, 64, 1–22. DOI: 10.1016/j.progpolymsci.2015.05.001.
  • Zhang, J.; Liu, K.; Mullen, K.; Yin, M. “Self-assemblies of amphiphilic homopolymers: Synthesis, morphology studies and biomedical applications,” Chem. Commun. 2015, 51, 11541–11555. DOI: 10.1039/C5CC03016A.
  • Goldar, A.; Sikorav, J.-L. “DNA renaturation at the water-phenol interface,” Eur. Phys. J. E 2004, 14, 211–239. DOI: 10.1140/epje/i2004-10011-7.
  • Glagoleva, A. A.; Vasilevskaya, V. V. “Macromolecules with amphiphilic monomer units at interface of two immiscible liquids,” J. Chem. Phys. 2017, 147, 184902–184908. DOI: 10.1063/1.5001880.
  • Vasilevskaya, V. V.; Ermilov, V. A. “Computer simulation of macromolecular systems with amphiphilic monomer units: Biomimetic models,” Polym. Sci. Ser. A 2011, 53, 846–866. DOI: 10.1134/S0965545X11090148.
  • Okhapkin, I. M.; Makhaeva, E. E.; Khokhlov, A. R. “Two-dimensional classification of amphiphilic monomers based on interfacial and partitioning properties. 1. Monomers of synthetic water-soluble polymers,” Colloid Polym. Sci. 2005, 284, 117–123. DOI: 10.1007/s00396-005-1342-1.
  • Okhapkin, I. M.; Askadskii, A. A.; Markov, V. A.; Makhaeva, E. E.; Khokhlov, A. R. Two-dimensional classification of amphiphilic monomers based on interfacial and partitioning properties. 2. Amino acids and amino acid residues,” Colloid Polym. Sci. 2006, 284, 575–585. DOI: 10.1007/s00396-005-1447-6.
  • Vasilevskaya, V. V.; Markov, V. A.; ten Brinke, G.; Khokhlov, A. R. “Self-organization in solutions of stiff-chain amphiphilic macromolecules,” Macromolecules 2008, 41, 7722–7728. DOI: 10.1021/ma800465j.
  • Glagolev, M. K.; Vasilevskaya, V. V.; Khokhlov, A. R. “Self-organization of amphiphilic macromolecules with local helix structure in concentrated solutions,” J. Chem. Phys. 2012, 137, 084901–084906. DOI: 10.1063/1.4745480.
  • Glagolev, M. K.; Vasilevskaya, V. V.; Khokhlov, A. R. “Effect of induced self-organization in mixtures of amphiphilic macromolecules with different stiffness,” Macromolecules 2015, 48, 3767–3774. DOI: 10.1021/acs.macromol.5b00188.
  • Tucker, A. K.; Stevens, M. J. “Study of the structure dependent behavior of polyelectrolyte in water,” J. Chem. Phys. 2013, 139, 104907. DOI: 10.1063/1.4820527.
  • Lazutin, A. A.; Govorun, E. N.; Vasilevskaya, V. V.; Khokhlov, A. R. “New strategy to create ultra-thin surface layer of grafted amphiphilic macromolecules,” J. Chem. Phys. 2015, 142, 184904–184912. DOI: 10.1063/1.4920973.
  • Glagoleva, A.; Erukhimovich, I.; Vasilevskaya, V. “Voids' microstructuring in lamellar phase of amphiphilic macromolecules,” Macromol. Theory Simul. 2013, 22, 31–35. DOI: 10.1002/mats.201200056.
  • Lazutin, A. A.; Vasilevskaya, V. V. “Lamellae - parking garage structure - lamellae transition in densely grafted layers of amphiphilic homopolymers: Impact of polymerization degree,” ACS Omega 2018, 3, 12967–12974. DOI: 10.1021/acsomega.8b01643.
  • Glagoleva, A. A.; Vasilevskaya, V. V.; Yoshikawa, K.; Khokhlov, A. R. “Self-assembly of an amphiphilic macromolecule under spherical confinement: An efficient route to generate hollow nanospheres,” J. Chem. Phys. 2013, 139, 244901–244908. DOI: 10.1063/1.4839795.
  • Antonietti, M.; Forster, S. Vesicles and liposomes: A self-assembly principle beyond lipids. Adv. Mater. 2003, 15, 1323–1333. DOI: 10.1002/adma.200300010.
  • Palivan, C. G.; Goers, R.; Najer, A.; Zhang, X.; Car, A.; Meier, W. “Bioinspired polymer vesicles and membranes for biological and medical applications,” Chem. Soc. Rev. 2016, 45, 377–411. DOI: 10.1039/C5CS00569H.
  • Basu, S.; Vutukuri, D. R.; Shyamroy, S.; Sandanaraj, B. S.; Thayumanavan, S. “Invertible amphiphilic homopolymers,” J. Am. Chem. Soc. 2004, 126, 9890–9891. DOI: 10.1021/ja047816a.
  • Arumugam, S.; Vutukuri, D. R.; Thayumanavan, S.; Ramamurthy, V. “Amphiphilic homopolymer as a reaction medium in water: Product selectivity within polymeric nanopockets,” J. Am. Chem. Soc. 2005, 127, 13200–13206. DOI: 10.1021/ja051107v.
  • Basu, S.; Vutukuri, D. R.; Thayumanavan, S. “Homopolymer micelles in heterogeneous solvent mixtures, J. Am. Chem. Soc. 2005, 127, 16794–16795. DOI: 10.1021/ja056042a.
  • Sandanaraj, B. S.; Simard, J.; Vutukuri, D. R.; Hong, R.; Rotello, V. M.; Thayumanavan, S. “Noncovalent modification of chymotrypsin surface using an amphiphilic polymer scaffold: Implications in modulating protein function,” J. Am. Chem. Soc. 2005, 127, 10693–10698. DOI: 10.1021/ja051947.
  • Savariar, E. N.; Aathimanikandan, S. V.; Thayumanavan, S. “Supramolecular assemblies from amphiphilic homopolymers: Testing the scope,” J. Am. Chem. Soc. 2006, 128, 16224–16230. DOI: 10.1021/ja065213o.
  • Hordyjewicz-Baran, Z.; You, L.; Smarsly, B.; Sigel, R.; Schlaad, H. “Bioinspired polymer vesicles based on hydrophilically modified polybutadienes,” Macromolecules 2007, 40, 3901–3903. DOI: 10.1021/ma070347n.
  • Changez, M.; Kang, N.-G.; Lee, C. H.; Lee, J.-S. “Reversible and pH-sensitive vesicles from amphiphilic homopolymer poly(2-(4-vinylphenyl)pyridine),” Small 2010, 6, 63–68. DOI: 10.1002/smll.200901670.
  • Changez, M.; Kang, N.-G.; Lee, J.-S. “Uni-molecular hollow micelles from amphiphilic homopolymer poly(2-(4-vinylphenyl)pyridine),” Small 2012, 8, 1173–1179. DOI: 10.1002/smll.201102569.
  • Hur, Y.-H.; Kang, N.-G.; Kang, B.-G.; Yu, Y.-G.; Changez, M.; Lee, J.-S. “Novel amphiphilic homopolymers containing meta- and para-pyridine moieties with living characteristics and their self-assembly,” J. Polym. Sci. A Polym. Chem. 2013, 51, 3458–3469. DOI: 10.1002/pola.26743.
  • Mane, S. R.; Rao, V. N.; Shunmugam, R. “Reversible pH- and lipid-sensitive vesicles from amphiphilic norbornene-derived thiobarbiturate homopolymers,” ACS Macro Lett. 2012, 1, 482–488. DOI: 10.1021/mz2002092.
  • Mane, S. R.; Rao, V. N.; Chaterjee, K.; Dinda, H.; Nag, S.; Kishore, A.; Sarma, J. D.; Shunmugam, R. “Amphiphilic homopolymer vesicles as unique nano-carriers for cancer therapy,” Macromolecules 2012, 45, 8037–8042. DOI: 10.1021/ma301644m.
  • Zhou, X.; Li, X.; Mao, T.; Zhang, J.; Li, X. “Facile engineering of nano- and microparticles via self-assembly of homopolymers,” Soft Matter 2011, 7, 6264–6272. DOI: 10.1039/c1sm05469d.
  • Wu, H.; Zhang, L.; Xu, Y.; Ma, Z.; Shen, Z.; Fan, X.; Zhou, Q. “Amphiphilic mesogen-jacketed liquid crystalline polymers: Design, synthesis, and self-assembly behaviors,” J. Polym. Sci. A Polym. Chem. 2012, 50, 1792–1800. DOI: 10.1002/pola.25946.
  • Li, N.; Ye, G.; He, Y.; Wang, X. “Hollow microspheres of amphiphilic azo homopolymers: Self-assembly and photoinduced deformation behavior,” Chem. Commun. 2011, 47, 4757–4759. DOI: 10.1039/c0cc05010e.
  • Zhu, Y.; Liu, L.; Du, J. “Probing into homopolymer self-assembly: How does hydrogen bonding influence morphology?” Macromolecules 2013, 46, 194–203. DOI: 10.1021/ma302176a.
  • Zhu, Y.; Fan, L.; Yang, B.; Du, J. “Multifunctional homopolymer vesicles for facile immobilization of gold nanoparticles and effective water remediation,” ACS Nano 2014, 8, 5022–5031. DOI: 10.1021/nn5010974.
  • Dan, K.; Bose, N.; Ghosh, S. “Vesicular assembly and thermo-responsive vesicle-to-micelle transition from an amphiphilic random copolymer,” Chem. Commun. 2011, 47, 12491–12493. DOI: 10.1039/c1cc15663b.
  • Wang, X.; Duan, Y.; Li, C.; Lu, Y. “Synthesis, self-assembly, and formation of polymer vesicle hydrogels of thermoresponsive copolymers,” J. Mater. Sci. 2015, 50, 3541–3548. DOI: 10.1007/s10853-015-8911-6.
  • Sadeghi, I.; Asatekin, A. “Spontaneous self-assembly and micellization of random copolymers in organic solvents,” Macromol. Chem. Phys. 2017, 218, 1700226–1700229. DOI: 10.1002/macp.201700226.
  • Laskar, P.; Dey, J.; Banik, P.; Mandal, M.; Ghosh, S. K. “In vitro drug and gene delivery using random cationic copolymers forming stable and pH-sensitive polymersomes,” Macromol. Biosci. 2017, 17, 1600324–1600313. DOI: 10.1002/mabi.201600324.
  • Zhang, C.; Zhang, R.; Zhu, Y.; Wei, W.; Gu, Y.; Liu, X. “Polymer vesicles prepared from the (l-phenylalanine ethyl ester)-modified hyaluronic acid,” Mater. Lett. 2016, 164, 15–18. DOI: 10.1016/j.matlet.2015.10.052.
  • Cai, C.; Lin, J.; Chen, T.; Tian, X. “Aggregation behavior of graft copolymer with rigid backbone,” Langmuir 2010, 26, 2791–2797. DOI: 10.1021/la902834m.
  • Zhuang, Z.; Zhu, X.; Cai, C.; Lin, J.; Wang, L. “Self-assembly of a mixture system containing polypeptide graft and block copolymers: Experimental studies and self-consistent field theory simulations. J. Phys. Chem. B 2012, 116, 10125–11134. DOI: 10.1021/jp305956v.
  • Lee, H. J.; Yang, S.; An, E. J.; Kim, J.-D. “Biodegradable polymersomes from poly(2-hydroxyethyl aspartamide) grafted with lactic acid oligomers in aqueous solution.” Macromolecules 2006, 39, 4938–4940. DOI: 10.1021/ma060198t.
  • Lee, H. J.; Kwon, S.-H.; Jang, K.-S. “Ultrasmall polymersomes of poly-a,b-(N-2- hydroxyethyl l-aspartamide)-graft-poly(l-lactic acid) copolymers as a potential drug carrier,” RSC Adv. 2016, 6, 86361–86372. DOI: 10.1039/C6RA13675C.
  • Kim, M. S.; Lee, D. S. “Biodegradable and pH-sensitive polymersome with tuning permeable membrane for drug delivery carrier,” Chem. Commun. 2010, 46, 4481–4483. DOI: 10.1039/c001500h.
  • Lian, X.; Wu, D.; Song, X.; Zhao, H. “Synthesis and self-assembly of amphiphilic asymmetric macromolecular brushes,” Macromolecules 2010, 43, 7434–7445. DOI: 10.1021/ma101452h.
  • Zhuang, J.; Garzoni, M.; Torres, D. A.; Poe, A.; Pavan, G. M.; Thayumanavan, S. “Programmable nanoassemblies from non-assembling homopolymers using ad hoc electrostatic interactions,” Angew. Chem. Int. Ed. 2017, 56, 4145–4149. DOI: 10.1002/anie.201611688.
  • Cha, J. N.; Birkedal, H.; Euliss, L. E.; Bartl, M. H.; Wong, M. S.; Deming, T. J.; Stucky, G. D. “Spontaneous formation of nanoparticle vesicles from homopolymer polyelectrolytes,” J. Am. Chem. Soc. 2003, 125, 8285–8289. DOI: 10.1021/ja0279601.
  • Jin, C.; Zhang, T.; Liu, F.; Wang, L.; Yin, Q.; Xiao, D. “Fabrication of size controllable polymeric hollow nanospheres containing azo functional groups via ionic self-assembly,” RSC Adv. 2014, 4, 8216–8223. DOI: 10.1039/c3ra46242k.
  • Zhang, T.; Jin, C.; Wang, L.; Yin, Q. “One-step synthesis of hollow polymeric nanospheres: Self-assembly of amphiphilic azopolymers via hydrogen bond formation,” RSC Adv. 2014, 4, 36882–36889. DOI: 10.1039/C4RA06415A.
  • Wang, L.-H.; Wu, T.; Zhang, Z.; You, Y.-Z. “Unconventional transitions of poly(N-isopropylacrylamide) upon heating in the presence of multiple noncovalent interactions,” Macromolecules 2016, 49, 362–366. DOI: 10.1021/acs.macromol.5b02106.
  • Wang, L.-H.; Zhang, Z.-D.; Hong, C.-Y.; He, X.-H.; You, W.; You, Y. Z. “Anion-dipole interactions make the homopolymers self-assemble into multiple nanostructures,” Adv. Mater. 2015, 27, 3202–3207. DOI: 10.1002/adma.201405579.
  • Wang, L.-H.; Wu, T.; You, Y.-Z. “Anion-dipole interactions regulating the self-assembled nanostructures of polymers,” Polym. Chem. 2015, 6, 4972–4977. DOI: 10.1039/C5PY00793C.
  • Glagoleva, A. A.; Vasilevskaya, V. V.; Khokhlov, A. R. “Vesicle-like globules of amphiphilic macromolecules,” Macromol. Theory Simul. 2015, 24, 393–398. DOI: 10.1002/mats.201500024.
  • Glagoleva, A. A.; Vasilevskaya, V. V. “Formation of a vesicle-like globule under steric restrictions,” Polym. Sci. Ser. A 2016, 58, 292–301. DOI: 10.1134/S0965545X16020097.
  • Glagoleva, A. A.; Vasilevskaya, V. V.; Khokhlov, A. R. “Polymer globule with fractal properties caused by intramolecular nanostructuring and spatial constrains,” Soft Matter 2016, 12, 5138–5145. DOI: 10.1039/C6SM00747C.
  • Larin, D. E.; Glagoleva, A. A.; Govorun, E. N.; Vasilevskaya, V. V. “Morphological diagram of amphiphilic H-graft-P macromolecules in poor solvent: Theory and computer experiment,” Polymer 2018, 146, 230–241. DOI: 10.1016/j.polymer.2018.04.077.
  • de Gennes, P. G. Scaling concepts in polymer physics; Cornell University Press: Ithaca, NY, 1979.
  • Yu, A. G.; Khokhlov, A. R. Statistical physics of macromolecules; American Institute of Physics: New York, 1994.
  • Vasilevskaya, V. V.; Klochkov, A. A.; Lazutin, A. A.; Khalatur, P. G.; Khokhlov, A. R. “HA (hydrophobic/amphiphilic) copolymer model: Coil-globule transition versus aggregation,” Macromolecules 2004, 37, 5444–5460. DOI: 10.1021/ma0359741.
  • Govorun, E. N.; Ivanov, V. A.; Khokhlov, A. R.; Khalatur, P. G.; Borovinsky, A. L.; Grosberg, A. Y. “Primary sequences of proteinlike copolymers: Levy-flight-type long-range correlations,” Phys. Rev. E 2001, 64, R40903. DOI: 10.1103/PhysRevE.64.040903.
  • Ermilov, V. A.; Vasilevskaya, V. V.; Khokhlov, A. R. “Secondary globular structure of copolymers containing amphiphilic and hydrophilic units: Computer simulation analysis,” Polym. Sci. Ser. A 2007, 49, 89–96. DOI: 10.1134/S0965545X07010129.
  • Ermilov, V. A.; Vasilevskaya, V. V.; Khokhlov, A. R. “Secondary structure of globules of copolymers consisting of amphiphilic and hydrophilic units: Effect of potential range,” Polym. Sci. Ser. A 2010, 52, 317–327. DOI: 10.1134/S0965545X10030144.
  • Ushakova, A. S.; Govorun, E. N.; Khokhlov, A. R. “Globules of amphiphilic macromolecules,” J. Phys. Condens. Matter. 2006, 18, 915–930. DOI: 10.1088/0953-8984/18/3/010.
  • Maresov, E. A.; Semenov, A. N. “Mesoglobule morphologies of amphiphilic polymers,” Macromolecules 2008, 41, 9439–9457. DOI: 10.1021/ma801260g.
  • Subbotin, A. V.; Semenov, A. N. “Aggregation effects in solutions of model oligopeptides and other amphiphilic polymers,” Polym. Sci. Ser. C 2012, 54, 36–47. DOI: 10.1134/S1811238212030010.
  • Chang, H.-Y.; Lin, Y.-L.; Sheng, Y.-J.; Tsao, H.-K. “Multilayered polymersome formed by amphiphilic asymmetric macromolecular brushes,” Macromolecules 2012, 45, 4778–4789. DOI: 10.1021/ma3007366.
  • Luo, Z.; Li, Y.; Wang, B.; Jiang, J. “pH-sensitive vesicles formed by amphiphilic grafted copolymers with tunable membrane permeability for drug loading/release: A multiscale simulation study,” Macromolecules 2016, 49, 6084–6094. DOI: 10.1021/acs.macromol.6b01211.
  • Liu, Y.-T.; Li, Y.-R.; Wang, X. “Spontaneous onion shape vesicle formation and fusion of comb-like block copolymers studied by dissipative particle dynamics,” RSC Adv. 2017, 7, 5130–5135. DOI: 10.1039/C6RA26127B.
  • Wang, H.; Liu, Y.-T.; Qian, H.-J.; Lu, Z.-Y. “Dissipative particle dynamics simulation study on complex structure transitions of vesicles formed by comb-like block copolymers,” Polymer 2011, 52, 2094–2101. DOI: 10.1016/j.polymer.2011.02.045.
  • Sun, X.-L.; Pei, S.; Wang, J.-F.; Wang, P.; Liu, Z.-B.; Zhang, J. “Coarse-grained molecular dynamics simulation study on spherical and tube-like vesicles formed by amphiphilic copolymers,” J. Polym. Sci. Part B: Polym. Phys. 2017, 55, 1220–1226. DOI: 10.1002/polb.24376.
  • Zhang, L.; Lin, J.; Lin, S. “Aggregate morphologies of amphiphilic graft copolymers in dilute solution studied by self-consistent field theory,” J. Phys. Chem. B 2007, 111, 9209–9217. DOI: 10.1021/jp068429l.
  • Wang, L.; Jiang, T.; Lin, J. “Self-assembly of graft copolymers in backbone-selective solvents: A route toward stable hierarchical vesicles,” RSC Adv. 2013, 3, 19481–19491. DOI: 10.1039/c3ra43355b.
  • Kharel, S.; Gautam, A.; Dickescheid, A.; Loo, S. C. J. “Hollow microparticles as a superior delivery system over solid microparticles for the encapsulation of peptides,” Pharm. Res. 2018, 35, 185. DOI: 10.1007/s11095-018-2461-y.
  • He, H.; Liu, B.; Wang, M.; Vachet, R. W.; Thayumanavan, S. “Sequential nucleophilic “click” reactions for functional amphiphilic homopolymers,” Polym. Chem. 2019, 10, 187–193. DOI: 10.1039/C8PY01341A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.