254
Views
22
CrossRef citations to date
0
Altmetric
Original Research

Phytosterol-loaded CD44 receptor-targeted PEGylated nano-hybrid phyto-liposomes for synergistic chemotherapy

, , , , , , , ORCID Icon, & ORCID Icon show all
Pages 423-434 | Received 13 May 2019, Accepted 05 Feb 2020, Published online: 13 Feb 2020
 

ABSTRACT

Background

Phytosterols significantly reduce the risk of cancer by directly inhibiting tumor growth, inducing apoptosis, and inhibiting tumor metastasis. Stigmasterol (STS), a phytosterol, exhibits anticancer effects against various cancers, including breast cancer. Chemotherapeutics, including doxorubicin (DOX), might act synergistically with phytosterol against the proliferation and metastasis of breast cancer. Although such compounds can show potential anticancer activity, their combined effect with suitable formulation has not investigated yet.

Methods

Hyaluronic acid (HA)-modified PEGylated DOX-STS loaded phyto-liposome was fabricated via a thin-film hydration method. The prepared phyto-liposome was optimized with regards to its physicochemical and other properties. Further, in vitro and in vivo study was carried out in breast cancer cells expressing a different level of CD44 receptors.

Results

The particle size of prepared HA-DOX-STS-lipo was 173.9 ± 2.4 nm, and showed pH-depended DOX release, favoring the effective tumor targetability. The in vitro anticancer activity of HA-DOX-STS-lipo was significantly enhanced in MDA-MB-231, CD44-overexpressing cells relative to MCF-7 cells demonstrating HA-mediated targeting effect. HA-DOX-STS-lipo accumulated more and increased antitumor efficacy in the MDA-MB-231 xenograft tumor model expressing high levels of CD44, suggesting the potential of carrier system toward CD44-overexpressing tumors.

Declaration of interest

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Reviewer disclosures

Peer reviewers on this manuscript have no relevant financial or other relationships to disclose.

Supplementary material

Supplemental data for this article can be accessed here.

Additional information

Funding

This research was supported by National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIP) (No. 2018R1A2A2A05021143) and by the Medical Research Center Program (2015R1A5A2009124) through the NRF funded by MSIP. This research was also supported by a grant (16173MFDS542) from the Ministry of Food and Drug Safety in 2016.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 876.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.