286
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

SSA optimized back propagation neural network model for dam displacement monitoring based on long-term temperature data

ORCID Icon, &
Pages 1617-1643 | Received 20 Dec 2021, Accepted 12 Jun 2022, Published online: 23 Jun 2022
 

Abstract

Featured with the harmonic sinusoidal function to reflect temperature effects, the hydrostatic-season-time (HST) model is often used to monitor the concrete gravity dam health, but it does not take account of the effects of environment temperatures in real-term and has flaws especially when applied in conditions of significant temperature variations. A model of Sparrow Search Algorithm optimized error Back Propagation neural network (SSA-BP) based on the hydrostatic-temperature-time (HTT) model is proposed in this paper for predicting the concrete gravity dam displacement using the long-term environment temperature variable sets to reflect temperature effects. Successive Projections Algorithm (SPA) is used for the first time for feature selection on long-term temperature variables to further optimize the model (as SPA-SSA-BP). Through a case study with the practical observed data from a reality high concrete gravity dam, the effectiveness of the new model is verified, suggesting that HTT-based SSA-BP models have better performance than HST with the best result obtained when using the 2-year long variable sets. The SSA-BP model has much lower error in predicting the concrete dam displacement than Multiple Linear Regression (MLR). The arithmetic speed and prediction accuracy of the SPA-SSA-BP model is optimized as it can minimize the collinearity among feature variables in the long-term HTT variable sets, bring down the input variable dimension close to the level of HST, and diminish the redundant data information.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Key R & D Program of China (2016YFC0401600 and 2017YFC0404900), the National Natural Science Foundation of China (52079022, 51779035, 51769033 and 51979027), and the Fundamental Research Funds for the Central Universities (DUT19LK14).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 229.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.