286
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

SSA optimized back propagation neural network model for dam displacement monitoring based on long-term temperature data

ORCID Icon, &
Pages 1617-1643 | Received 20 Dec 2021, Accepted 12 Jun 2022, Published online: 23 Jun 2022

References

  • Allawi, M. F., Jaafar, O., Hamzah, F.M., Abdullah, S. M. S., & El-Shafie, A. (2018). Review on applications of artificial intelligence methods for dam and reservoir-hydro-environment models. Environmental Science and Pollution Research International, 25(14), 13446–13469. https://doi.org/10.1007/s11356-018-1867-8
  • An, G., Jiang, Z., Chen, L., Cao, X., Li, Z., Zhao, Y., & Sun, H. (2021). Ultra short-term wind power forecasting based on sparrow search algorithm optimization deep extreme learning machine. Sustainability, 13(18), 10453. https://doi.org/10.3390/su131810453
  • Babaei, M., Moeini, R., & Ehsanzadeh, E. (2019). Artificial neural network and support vector machine models for inflow prediction of dam reservoir (case study: Zayandehroud dam reservoir). Water Resources Management, 33(6), 2203–2218. https://doi.org/10.1007/s11269-019-02252-5
  • Belmokre, A., Mihoubi, M. K., & Santillan, D. (2019). Analysis of dam behavior by statistical models: Application of the random forest approach. KSCE Journal of Civil Engineering, 23(11), 4800–4811. https://doi.org/10.1007/s12205-019-0339-0
  • Chen, H., & Zeng, Z. (2013). Deformation prediction of landslide based on improved back-propagation neural network. Cognitive Computation, 5(1), 56–62. https://doi.org/10.1007/s12559-012-9148-1
  • Chen, S., Gu, C., Lin, C., Zhang, K., & Zhu, Y. (2021). Multi-kernel optimized relevance vector machine for probabilistic prediction of concrete dam displacement. Engineering with Computers, 37(3), 1943–1959. https://doi.org/10.1007/s00366-019-00924-9
  • Dai, B. (2018). Statistical model optimized random forest regression model for concrete dam deformation monitoring. Structural Control & Health Monitoring, 25(6), e2170. https://doi.org/10.1002/stc.2170
  • Du, G., Liu, Z., & Lu, H. (2021). Application of innovative risk early warning mode under big data technology in Internet credit financial risk assessment. Journal of Computational and Applied Mathematics, 386, 113260. https://doi.org/10.1016/j.cam.2020.113260
  • Feng, B.F., Xu, Y.S., Zhang, T., & Zhang, X. (2022). Hydrological time series prediction by extreme machine learning and sparrow search algorithm. Water Supply, 22(3), 3143–3157. https://doi.org/10.2166/ws.2021.419
  • Gamse, S. (2020). Analysis of periodicities in long-term displacement time series in concrete dams. Structural Control & Health Monitoring, 27(3), e2477. https://doi.org/10.1002/stc.2477
  • Guo, Z., Wang, M., Agyekum, A. A., Wu, J., Chen, Q., Zuo, M., El-Seedi, H. R., Tao, F., Shi, J., Ouyang, Q., & Zou, X. (2020). Quantitative detection of apple watercore and soluble solids content by near infrared transmittance spectroscopy. Journal of Food Engineering, 279, 109955. https://doi.org/10.1016/j.jfoodeng.2020.109955
  • Han, X., Wei, Z., Zhang, B., Li, Y., Du, T., & Chen, H. (2021). Crop evapotranspiration prediction by considering dynamic change of crop coefficient and the precipitation effect in back-propagation neural network model. Journal of Hydrology, 596, 126104. https://doi.org/10.1016/j.jhydrol.2021.126104
  • Huang, Y., & Wan, Z. (2022). Deformation monitoring analysis of an RCC gravity dam considering frost heaving in an alpine region: A case study. European Journal of Environmental and Civil Engineering, 26(4), 1349–1363. https://doi.org/10.1080/19648189.2020.1713216
  • Jiang, W., Lu, C., Zhang, Y., Ju, W., Wang, J., Hong, F., Wang, T., & Ou, C. (2020). Moving-window-improved Monte Carlo uninformative variable elimination combining successive projections algorithm for near-infrared spectroscopy (NIRS). Journal of Spectroscopy, 2020, 1–12. https://doi.org/10.1155/2020/3590301
  • Kang, F., Liu, J., Li, J., & Li, S. (2017). Concrete dam deformation prediction model for health monitoring based on extreme learning machine. Structural Control & Health Monitoring, 24(10), e1997. https://doi.org/10.1002/stc.1997
  • Kang, F., & Li, J. (2020). Displacement model for concrete dam safety monitoring via Gaussian process regression considering extreme air temperature. Journal of Structural Engineering, 146(1), 05019001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002467
  • Kang, F., Li, J., & Dai, J. (2019a). Prediction of long-term temperature effect in structural health monitoring of concrete dams using support vector machines with Jaya optimizer and salp swarm algorithms. Advances in Engineering Software, 131, 60–76. https://doi.org/10.1016/j.advengsoft.2019.03.003
  • Kang, F., Li, J., Zhao, S., & Wang, Y. (2019b). Structural health monitoring of concrete dams using long-term air temperature for thermal effect simulation. Engineering Structures, 180, 642–653. https://doi.org/10.1016/j.engstruct.2018.11.065
  • Kang, F., Liu, X., & Li, J. (2020). Temperature effect modeling in structural health monitoring of concrete dams using kernel extreme learning machines. Structural Health Monitoring, 19(4), 987–1002. https://doi.org/10.1177/1475921719872939
  • Leger, P., & Leclerc, M. (2007). Hydrostatic, temperature, time-displacement model for concrete dams. Journal of Engineering Mechanics, 133(3), 267–277. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:3(267)
  • Li, F., Wang, Z. Z., & Liu, G. (2013). Towards an error correction model for dam monitoring data analysis based on cointegration theory. Structural Safety, 43, 12–20. https://doi.org/10.1016/j.strusafe.2013.02.005
  • Li, G., Hu, T., & Bai, D. (2021). BP neural network improved by sparrow search algorithm in predicting debonding strain of FRP-strengthened RC beams. Advances in Civil Engineering, 2021, 1–13. https://doi.org/10.1155/2021/9979028
  • Li, M., Shen, Y., Ren, Q., & Li, H. (2019). A new distributed time series evolution prediction model for dam deformation based on constituent elements. Advanced Engineering Informatics, 39, 41–52. https://doi.org/10.1016/j.aei.2018.11.006
  • Liu, H.F., Ren, C., Zheng, Z.T., Liang, Y.J., & Lu, X.J. (2017). Study of a gray genetic BP neural network model in fault monitoring and a diagnosis system for dam safety. ISPRS International Journal of Geo-Information, 7(1), 4. https://doi.org/10.3390/ijgi7010004
  • Liu, T., Yuan, Z., Wu, L., & Badami, B. (2021). Optimal brain tumor diagnosis based on deep learning and balanced sparrow search algorithm. International Journal of Imaging Systems and Technology, 31(4), 1921–1935. https://doi.org/10.1002/ima.22559
  • Liu, Y., Zhou, S., Liu, W., Yang, X., & Luo, J. (2018). Least-squares support vector machine and successive projection algorithm for quantitative analysis of cotton-polyester textile by near infrared spectroscopy. Journal of near Infrared Spectroscopy, 26(1), 34–43. https://doi.org/10.1177/0967033518757069
  • Mário, C. U. A., Teresa, C.B.S., Roberto, K.H.G., Takashi, Y.,Henrique, C.C.,& Valeria, V. (2001). The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometrics and Intelligent Laboratory Systems, 57(2), 65–73. https://doi.org/10.1016/S0169-7439(01)00119-8
  • Mata, J., de Castro, A. T., & Da Costa, J. S. (2014). Constructing statistical models for arch dam deformation. Structural Control and Health Monitoring, 21(3), 423–437. https://doi.org/10.1002/stc.1575
  • Mata, J., Salazar, F., Barateiro, J., & Antunes, A. (2021). Validation of machine learning models for structural dam behaviour interpretation and prediction. Water, 13(19), 2717. https://doi.org/10.3390/w13192717
  • Qu, X., Yang, J., & Chang, M. (2019). A deep learning model for concrete dam deformation prediction based on RS-LSTM. Journal of Sensors, 2019, 1–14. https://doi.org/10.1155/2019/4581672
  • Ren, C., An, N., Wang, J., Li, L., Hu, B., & Shang, D. (2014). Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting. Knowledge-Based Systems, 56, 226–239. https://doi.org/10.1016/j.knosys.2013.11.015
  • Ren, Q., Li, M., Li, H., & Shen, Y. (2021). A novel deep learning prediction model for concrete dam displacements using interpretable mixed attention mechanism. Advanced Engineering Informatics, 50, 101407, https://doi.org/10.1016/j.aei.2021.101407
  • Rezaeeian, A., Davoodi, M., & Jafari, M. K. (2019). Determination of optimum cross-section of earth dams using ant colony optimization algorithm. Scientia Iranica, 26(3), 1104–1121. https://doi.org/10.24200/sci.2018.21078
  • Ribeiro, L. S., Wilhelm, V. E., Faria, É. F., Correa, J. M., & dos Santos, A. C. P. (2019). A comparative analysis of long-term concrete deformation models of a buttress dam. Engineering Structures, 193, 301–307. https://doi.org/10.1016/j.engstruct.2019.05.043
  • Salazar, F., Morán, R., Toledo, M. Á., & Oñate, E. (2017). Data-based models for the prediction of dam behaviour: A review and some methodological considerations. Archives of Computational Methods in Engineering, 24(1), 1–21. https://doi.org/10.1007/s11831-015-9157-9
  • Salazar, F., Toledo, M. Á., Oñate, E., & Morán, R. (2016). An empirical comparison of machine learning techniques for dam behaviour modelling (vol 56, pg 9, 2015). Structural Safety, 59, 118–118. https://doi.org/10.1016/j.strusafe.2016.02.001
  • Shao, Y., Liu, Y., Xuan, G., Wang, Y., Gao, Z., Hu, Z., Han, X., Gao, C., & Wang, K. (2020). Application of hyperspectral imaging for spatial prediction of soluble solid content in sweet potato. RSC Advances, 10(55), 33148–33154. https://doi.org/10.1039/C9RA10630H
  • Shi, L., Ding, X., Li, M., & Liu, Y. (2021). Research on the capability maturity evaluation of intelligent manufacturing based on firefly algorithm, sparrow search algorithm, and BP neural network. Complexity, 2021, 1–26. https://doi.org/10.1155/2021/5554215
  • Shi, Y. (2018). A statistical model of deformation during the construction of a concrete face rockfill dam. Structural Control & Health Monitoring, 25(2), e2074. https://doi.org/10.1002/stc.2074
  • Stojanovic, B., Milivojevic, M., Ivanovic, M., Milivojevic, N., & Divac, D. (2013). Adaptive system for dam behavior modeling based on linear regression and genetic algorithms. Advances in Engineering Software, 65, 182–190. https://doi.org/10.1016/j.advengsoft.2013.06.019
  • Su, H., Wen, Z., Sun, X., & Yang, M. (2015). Time-varying identification model for dam behavior considering structural reinforcement. Structural Safety, 57, 1–7. https://doi.org/10.1016/j.strusafe.2015.07.002
  • Tao, Z., Liu, Y., Cheng, L., & Yang, Q. (2019). Failure and stability analysis of jinping-I arch dam based on geomechanical model test and nonlinear numerical analysis. Rock Mechanics and Rock Engineering, 52(7), 2245–2260. https://doi.org/10.1007/s00603-018-1708-6
  • Tatin, M., Briffaut, M., Dufour, F., Simon, A., & Fabre, J.-P. (2018). Statistical modelling of thermal displacements for concrete dams: Influence of water temperature profile and dam thickness profile. Engineering Structures, 165, 63–75. https://doi.org/10.1016/j.engstruct.2018.03.010
  • Wang, H., Wu, X., & Gholinia, F. (2021). Forecasting hydropower generation by GFDL-CM3 climate model and hybrid hydrological-Elman neural network model based on Improved Sparrow Search Algorithm (ISSA). Concurrency and Computation-Practice & Experience, 33(24),e6476. https://doi.org/10.1002/cpe.6476
  • Wang, S., Zhang, N., Wu, L., & Wang, Y. (2016). Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renewable Energy, 94, 629–636. https://doi.org/10.1016/j.renene.2016.03.103
  • Wei, B., Chen, L., Li, H., Yuan, D., & Wang, G. (2020). Optimized prediction model for concrete dam displacement based on signal residual amendment. Applied Mathematical Modelling, 78, 20–36. https://doi.org/10.1016/j.apm.2019.09.046
  • Wu, D., Nie, P., He, Y., Wang, Z., & Wu, H. (2013). Spectral multivariable selection and calibration in visible-shortwave near-infrared spectroscopy for non-destructive protein assessment of spirulina microalga powder. International Journal of Food Properties, 16(5), 1002–1015. https://doi.org/10.1080/10942912.2011.574328
  • Xi, G.-y., Yue, J.-p., Zhou, B.-x., & Tang, P. (2011). Application of an artificial immune algorithm on a statistical model of dam displacement. Computers & Mathematics with Applications, 62(10), 3980–3986. https://doi.org/10.1016/j.camwa.2011.09.057
  • Xie, Y., Wang, C., Yang, W., Feng, M., Qiao, X., & Song, J. (2020). Canopy hyperspectral characteristics and yield estimation of winter wheat (Triticum aestivum) under low temperature injury. Scientific Reports, 10(1),244. https://doi.org/10.1038/s41598-019-57100-8
  • Xue, J., & Shen, B. (2020). A novel swarm intelligence optimization approach: Sparrow search algorithm. Systems Science & Control Engineering, 8(1), 22–34. https://doi.org/10.1080/21642583.2019.1708830
  • Yan, P., Shang, S., Zhang, C., Yin, N., Zhang, X., Yang, G., Zhang, Z., & Sun, Q. (2021). Research on the processing of coal mine water source data by optimizing BP neural network algorithm with sparrow search algorithm. IEEE Access, 9, 108718–108730. https://doi.org/10.1109/ACCESS.2021.3102020
  • Yang, L., Li, Z., Wang, D., Miao, H., & Wang, Z. (2021). Software defects prediction based on hybrid particle swarm optimization and sparrow search algorithm. IEEE Access, 9, 60865–60879. https://doi.org/10.1109/ACCESS.2021.3072993
  • Yang, L., Meng, L., Gao, H., Wang, J., Zhao, C., Guo, M., He, Y., & Huang, L. (2021). Building a stable and accurate model for heavy metal detection in mulberry leaves based on a proposed analysis framework and laser-induced breakdown spectroscopy. Food Chemistry, 338, 127886. https://doi.org/10.1016/j.foodchem.2020.127886
  • Yu, F., & Xu, X. (2014). A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network. Applied Energy, 134, 102–113. https://doi.org/10.1016/j.apenergy.2014.07.104
  • Yu, Y., Liu, X., Wang, E., Fang, K., & Huang, L. (2018). Dam safety evaluation based on multiple linear regression and numerical simulation. Rock Mechanics and Rock Engineering, 51(8), 2451–2467. https://doi.org/10.1007/s00603-018-1435-z
  • Zhang, X., Chen, X., & Li, J. (2020). Improving dam seepage prediction using back-propagation neural network and genetic algorithm. Mathematical Problems in Engineering, 2020, 1–8. https://doi.org/10.1155/2020/1404295
  • Zou, J., Bui, K.-T T., Xiao, Y., & Doan, C. V. (2018). Dam deformation analysis based on BPNN merging models. Geo-Spatial Information Science, 21(2), 149–157. https://doi.org/10.1080/10095020.2017.1386848
  • Zuan, P., & Huang, Y. (2018). Prediction of sliding slope displacement based on intelligent algorithm. Wireless Personal Communications, 102(4), 3141–3157. https://doi.org/10.1007/s11277-018-5333-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.