124
Views
0
CrossRef citations to date
0
Altmetric
Articles

SP3 Limit of the 2D/1D Transport Equations with Varying Degrees of Angular Coupling

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 303-330 | Published online: 18 Sep 2020
 

Abstract

Two-dimensional/one-dimensional (2D/1D) methods have become popular for solving the 3D Boltzmann neutron transport equation on medium-to-large computing platforms. These methods can have a wide range of accuracy that depends largely on the fidelity of the coupling between the 2D and 1D solutions in the spatial and angular variables. In general, methods with higher-order coupling are both more accurate and more computationally expensive. In order to simplify and reduce computation, an isotropic angular coupling term is frequently used. The deficiency of this approximation compared to higher-order angular coupling has been studied experimentally, but there is insufficient theoretical analysis in the literature to supplement the experimental results. In this paper, an asymptotic analysis is applied to the 2D/1D equations with varying orders of angular coupling to facilitate comparison to the simplified PN (SPN) equations. We find that the 2D/1D method with 3 angular coupling moments preserves the 3D SP3 limit, while the 2D/1D method with isotropic coupling does not. As a result, the isotropic coupling method is theoretically less accurate in problems with strong spatial gradients in both the radial and axial dimensions. This analysis provides a theoretical basis for design and optimization of the angular coupling scheme in a 2D/1D method. The results of the theoretical analysis are confirmed by using the Takeda-Ikeda benchmark to compare the accuracy of 2D/1D methods with isotropic and anisotropic coupling implemented in MPACT to SP1 and SP3 finite difference solutions.

Additional information

Funding

This work was supported by the Department of Energy - Consortium for Advanced Simulation of Light Water Reactors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 944.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.