263
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Adaptive nonlinear output-feedback dynamic surface control with unknown high-frequency gain sign

, &
Pages 2203-2214 | Received 19 Jan 2013, Accepted 14 May 2013, Published online: 19 Jun 2013
 

Abstract

In this paper, an adaptive dynamic surface control (DSC) for a class of nonlinear systems with unknown high-frequency gain (HFG) sign is proposed. The novelty of our scheme is that we separate the first virtual control signal from the HFG, which enables us to estimate the HFG directly. As a result, the traditional Nussbaum function (NF) approach is abandoned. By using the proposed DSC, the adaptive laws are needed only at the first design step and the explosion of terms in backstepping control can be eliminated, which greatly reduces the computational burden. In particular, based on an initialisation technique, we prove that the performance of the system tracking error can be guaranteed even when the HFG sign is unknown. It is shown that all signals of the closed-loop system are semi-globally uniformly bounded. Simulation results illustrate that the proposed scheme is more applicable than that of the NF-based backstepping control.

Acknowledgements

This work was supported by NSF of China under Grant 61203069, Research Foundation for Key Disciplines of Beijing Municipal Commission of Education under Grant XK100060422 and Macao Science and Technology Development Fund under Grant no. 016/2008/A1.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.