77
Views
0
CrossRef citations to date
0
Altmetric
Articles

Mixed ICC/ℋ control for systems with sensors aging

ORCID Icon &
Pages 1065-1080 | Received 16 Nov 2018, Accepted 08 Jun 2019, Published online: 27 Jun 2019
 

Abstract

A faulty sensor may lead to degraded system performance, system instability or even a fatal accident. On the other hand, the increasing need for safety and reliability has motivated the development of fault-tolerant control techniques. In this work, the sensor performance degradation due to its aging is modelled by the increment of sensor measurement noise covariance. The main contribution of this paper is the characterisation of the control synthesis conditions using parametrised linear matrix inequalities (PLMIs) for a multi-objective gain-scheduled noisy output-feedback controller that minimises the output cost on H2 performance with satisfactory system stability, H performance and control input covariance constraints (H2 constraints on the control inputs) in the presence of sensor aging. The closed-loop system stability and performance, in terms of mixed H2/H performances, relative improvement, numerical complexity, computation time, and initial conditions response, are studied, and a numerical example is used to illustrate the effectiveness of the proposed control scheme. The synthesised controller guarantees not only the stability but also the closed-loop mixed H2/H performances, and it is feasible for real-time applications.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.