1,723
Views
31
CrossRef citations to date
0
Altmetric
Articles

Minimising total tardiness for the identical parallel machine scheduling problem with splitting jobs and sequence-dependent setup times

, & ORCID Icon
Pages 1628-1643 | Received 31 May 2018, Accepted 17 Sep 2019, Published online: 11 Oct 2019
 

Abstract

This paper focuses on an identical parallel machine scheduling problem with minimising total tardiness of jobs. There are two major issues involved in this scheduling problem; (1) jobs which can be split into multiple sub-jobs for being processed on parallel machines independently and (2) sequence-dependent setup times between the jobs with different part types. We present a novel mathematical model with meta-heuristic approaches to solve the problem. We propose two encoding schemes for meta-heuristic solutions and three decoding methods for obtaining a schedule from the meta-heuristic solutions. Six different simulated annealing algorithms and genetic algorithms, respectively, are developed with six combinations of two encoding schemes and three decoding methods. Computational experiments are performed to find the best combination from those encoding schemes and decoding methods. Our findings show that the suggested algorithm provides not only better solution quality, but also less computation time required than the commercial optimisation solvers.

Additional information

Funding

This work was supported by Incheon National University (International Cooperative) Research Grant in 2017.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.