501
Views
4
CrossRef citations to date
0
Altmetric
Articles

Short-term production scheduling with non-triangular sequence-dependent setup times and shifting production bottlenecks

ORCID Icon, , , &
Pages 727-751 | Received 06 Feb 2019, Accepted 06 Dec 2019, Published online: 13 Jan 2020
 

Abstract

A novel mathematical model is introduced that allows solving real-life scheduling problems in complex multi-stage machine environment with (i) non-triangular sequence-dependent setup times and (ii) shifting production bottlenecks, both of which are important aspects appearing in varying manufacturing industries. The primary goal is to minimise the tardiness of customer orders, which may consist of multiple production orders each in turn composed of several batches. A secondary objective is to maximise the production capacity utilization as measured by the makespan. The model is elaborated for general animal-feed plants which have to deal with the particular production scheduling problem on a daily basis. Dispatching rules are introduced to enhance the optimization progress. Numerical experiments show that optimising the model leads to schedules that meet the due dates. Moreover, by reducing the mean idle time of production lines with 35.6%, the optimization leads to a makespan reduction of 6.5% on average compared to real-life applied schedules.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work is funded by a public-private partnership between CWI and ENGIE Services.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.