Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 48, 2018 - Issue 4
299
Views
25
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Glucuronidation of icaritin by human liver microsomes, human intestine microsomes and expressed UDP-glucuronosyltransferase enzymes: identification of UGT1A3, 1A9 and 2B7 as the main contributing enzymes

, , , , , , , & show all
Pages 357-367 | Received 22 Mar 2017, Accepted 21 Apr 2017, Published online: 15 May 2017
 

Abstract

1. Icaritin is a natural flavonoid with anti-osteoporosis activity. This study aimed to characterize icaritin glucuronidation by pooled human liver microsomes (HLM) and pooled human intestine microsomes (HIM), and to determine the contribution of individual UDP-glucuronosyltrans-ferase (UGT) enzyme to icaritin glucuronidation.

2. Glucuronidation rates were determined by incubating icaritin with uridine diphosphate glucuronic acid (UDPGA)-supplemented microsomes. Kinetic parameters were derived by appropriate model fitting. Relative activity factors and activity correlation analysis were performed to identify main UGT isoforms.

3. UGT1A3, 1A7, 1A8, 1A9 and 2B7 were mainly responsible for catalyzing the formation of two glucuronides (G1 and G2). Icaritin 3-O-glucuronidation (G1) was significantly correlated with Chenodeoxycholic acid (CDCA) glucuronidation (r = 0.787, p = 0.002), propofol glucuronidation (r = 0.661, p = 0.019) and Zidovudine (AZT) glucuronidation (r = 0.805, p = 0.002). Similarly, icaritin 7-O-glucuronidation (G2) was also correlated with CDCA glucuronidation (r = 0.640, p = 0.025), propofol glucuronidation (r = 0.592, p = 0.043) and AZT glucuronidation (r = 0.661, p = 0.019). In addition, UGT1A3, 1A9 and 2B7 contributed 37.5, 33.8 and 21.3% for G1 in pooled HLM, respectively. Also, UGT1A3, 1A9 and 2B7 contributed 34.3, 20.0 and 8.6% for G2 in pooled HLM, respectively.

4. Icaritin was subjected to significant glucuronidation, wherein UGT1A3, 1A7, 1A8, 1A9 and 2B7 were main contributing enzymes.

Declaration of interest

This work was supported by Major Project for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 81220108028). All the authors report no declarations of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 897.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.