241
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Computational modeling of hydrodynamics and mixing in a batch stirred vessel

ORCID Icon & ORCID Icon
Pages 883-892 | Published online: 22 Nov 2019
 

Abstract

In this work, the hydrodynamics, mixing and sedimentation is numerically investigated in the batch stirred vessel through CFD. The flow field obtained by performing transient CFD simulations using multiple reference frame (MRF) and sliding mesh approach along with standard k-ε turbulence model. The velocity field is investigated spatially and temporally and liquid circulation is quantified at various impeller speeds to find an optimum impeller speed. The importance of geometry of the draft tube baffles is investigated by quantifying the vorticity, mixing time, power requirement and quality of suspension in the batch stirred vessel. It is found that suspension quantity in a batch stirred vessel is strongly dependent on the hydrodynamics. The role of the draft tube and the inner baffles is further analyzed and found that proper positioning and length of the baffles is necessary to improve the turbulence characteristics and the quality of the suspension.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,086.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.