176
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Effects of aligned magnetic field on heat transfer of water-based carbon nanotubes nanofluid over a stretching sheet with homogeneous–heterogeneous reactions

&
Pages 5434-5446 | Received 30 Mar 2020, Accepted 05 Jul 2021, Published online: 25 Jul 2021
 

Abstract

The present analysis deals with the heat transfer of chemically reactive magnetic-nanofluid over a stretching surface by considering the aligned magnetic field in a porous medium under the influence of nonlinear thermal radiation, variable thermal conductivity and suction. An isothermal model of homogeneous–heterogeneous reactions is used to regulate the solute concentration profile. It is assumed that the water-based nanofluid is composed of single and multi-walled carbon nanotubes. By applying a suitable set of similarity transformations, the system of partial differential equations is first transformed into a system of nonlinear ordinary differential equations before being solved numerically. The impact of various pertinent parameters on the velocity, temperature, concentration, skin friction and local Nusselt number coefficient is discussed. It is found that the increase in the rate of heterogeneous and homogeneous reactions retards nanoparticle concentration distribution. The existence of variable thermal conductivity and an inclined magnetic field realise a decrease in heat transfer.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 275.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.