176
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Effects of aligned magnetic field on heat transfer of water-based carbon nanotubes nanofluid over a stretching sheet with homogeneous–heterogeneous reactions

&
Pages 5434-5446 | Received 30 Mar 2020, Accepted 05 Jul 2021, Published online: 25 Jul 2021

References

  • Acharya, N., K. Das, and P. Kundu. 2018. “Rotating Flow of Carbon Nanotube Over a Stretching Surface in the Presence of Magnetic Field: A Comparative Study.” Applied Nanoscience 8 (3): 369–378. https://doi.org/10.1007/s13204-018-0794-9.
  • Akbar, A. S., Z. H. Khan, and S. Nadeem. 2014. “The Combined Effects of Slip and Convective Boundary Conditions on Stagnation-Point Flow of CNT Suspended Nanofluid Over a Stretching Sheet.” Journal of Molecular Liquids 196: 21–25. https://doi.org/10.1016/j.molliq.2014.03.006.
  • Al-Mdallal, Q. M., N. Indumathi, B. Ganga, and A. A. Hakeem. 2020. “Marangoni Radiative Effects of Hybrid-Nanofluids Flow Past a Permeable Surface with Inclined Magnetic Field.” Case Studies in Thermal Engineering 17: 100571. https://doi.org/10.1016/j.csite.2019.100571.
  • Anuar, N. S., N. Bachok, N. M. Arifin, and H. Rosali. 2019. “Dual Solutions for Stagnation Point Flow of Carbon Nanotube Over a Permeable Exponentially Shrinking Sheet and Stability Analysis.” Journal of Multidisciplinary Engineering Science and Technology 6: 41–48.
  • Aziz, A., and M. Shams. 2020. “Entropy Generation in MHD Maxwell Nanofluid Flow with Variable Thermal Conductivity, Thermal Radiation, Slip Conditions, and Heat Source.” AIP Advances 10 (1): 015038. https://doi.org/10.1063/1.5129569.
  • Berrehal, H., and A. Maougal. 2019. “Entropy Generation Analysis for Multi-Walled Carbon Nanotube (MWCNT) Suspended Nanofluid Flow Over Wedge with Thermal Radiation and Convective Boundary Condition.” Journal of Mechanical Science and Technology 33 (1): 459–464. https://doi.org/10.1007/s12206-018-1245-y.
  • Das, M., B. K. Mahatha, and R. Nandkeolyar. 2015. “Mixed Convection and Nonlinear Radiation in the Stagnation Point Nanofluid Flow Towards a Stretching Sheet with Homogenous-Heterogeneous Reactions Effects.” Procedia Engineering127: 1018–1025. https://doi.org/10.1016/j.proeng.2015.11.451.
  • Ding, Y., H. Alias, D. Wen, and R. A. Williams. 2006. “Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids).” International Journal of Heat and Mass Transfer49: 240–250. https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009.
  • Eswaramoorthi, S., M. Bhuvaneswari, S. Sivasankaran, and O. D. Makinde. 2018. “Heterogeneous and Homogeneous Reaction Analysis on MHD Oldroyd-B Fluid with Cattaneo-Christov Heat Flux Model and Convective Heating.” Defect and Diffusion Forum 387: 194–206. https://doi.org/10.4028/www.scientific.net/DDF.387.194.
  • Ganga, B., M. Govindaraju, and A. A. Hakeem. 2019. “Effects of Inclined Magnetic Field on Entropy Generation in Nanofluid Over a Stretching Sheet with Partial Slip and Nonlinear Thermal Radiation.” Iranian Journal of Science and Technology 43 (4): 707–718. https://doi.org/10.1007/s40997-018-0227-0.
  • Ganji, D. D., and M. Hatami. 2014. “Squeezing Cu-water Nanofluid Flow Analysis Between Parallel Plates by DTM-Pade Method.” Journal of Molecular Liquids 193: 37–44. https://doi.org/10.1016/j.molliq.2013.12.034.
  • Ghadikolaei, S. S., K. Hosseinzadeh, D. D. Ganji, and B. Jafari. 2018. “Nonlinear Thermal Radiation Effect on Magneto Casson Nanofluid Flow with Joule Heating Effect Over an Inclined Porous Stretching Sheet.” Case Studies in Thermal Engineering 12: 176–187. https://doi.org/10.1016/j.csite.2018.04.009.
  • Gholinia, M., M. Armin, A. A. Ranjbar, and D. D. Ganji. 2019. “Numerical Thermal Study on CNTs/C2H6O2−H2O Hybrid Base Nanofluid Upon a Porous Stretching Cylinder Under Impact of Magnetic Source.” Case Studies in Thermal Engineering 14: 100490. https://doi.org/10.1016/j.csite.2019.100490.
  • Hakeem, A. A., P. Renuka, N. V. Ganesh, R. Kalaivanan, and B. Ganga. 2016. “Influence of Inclined Lorentz Forces on Boundary Layer Flow of Casson Fluid Over an Impermeable Stretching Sheet with Heat Transfer.” Journal of Magnetism and Magnetic Materials 401: 354–361. https://doi.org/10.1016/j.jmmm.2015.10.026.
  • Haq, R. U., Z. H. Khan, and W. A. Khan. 2014. “Thermophysical Effects of Carbon Nanotubes on MHD Flow Over a Stretching Surface.” Physica E 63: 215–222. https://doi.org/10.1016/j.physe.2014.06.004.
  • Haq, R., U. S. Nadeem, Z. H. Khan, and N. F. M. Noor. 2015. “Convective Heat Transfer in MHD Slip Flow Over a Stretching Surface in the Presence of Carbon Nanotubes.” Physica B: Condensed Matter 457: 40–47. https://doi.org/10.1016/j.physb.2014.09.031.
  • Hayat, T., M. Farooq, and A. Alsaedi. 2015. “Homogeneous–Heterogeneous Reactions in the Stagnation Point Flow of Carbon Nanotubes with Newtonian Heating.” AIP Advances 5: 027130. https://doi.org/10.1063/1.4908602.
  • Hayat, T., N. Gull, M. Farooq, and B. Ahmad. 2016. “Thermal Radiation Effect in MHD Flow of Powell–Eyring Nanofluid Induced by a Stretching Cylinder.” Journal of Aerospace Engineering 29: 04015011. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000501.
  • Hayat, T., M. I. Khan, M. Farooq, A. Alsaedi, and T. Yasmeen. 2017. “Impact of Marangoni Convection in the Flow of Carbon-Water Nanofluid with Thermal Radiation.” International Journal of Heat and Mass Transfer 106: 810–815. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.115.
  • Hayat, T., M. I. Khan, M. Waqas, A. Alsaedi, and M. Farooq. 2017. “Numerical Simulation for Melting Heat Transfer and Radiation Effects in Stagnation Point Flow of Carbon–Water Nanofluid.” Computer Methods in Applied Mechanics and Engineering 315: 1011–1024. https://doi.org/10.1016/j.cma.2016.11.033.
  • Hayat, T., K. Muhammad, A. Alsaedi, and S. Asghar. 2018. “Numerical Study for Melting Heat Transfer and Homogeneous–Heterogeneous Reactions in Flow Involving Carbon Nanotubes.” Results in Physics8: 415–421. https://doi.org/10.1016/j.rinp.2017.12.023.
  • Hussain, S. T., S. Nadeem, and R. Ul Haq. 2014. “Model-Based Analysis of Micropolar Nanofluid Flow Over a Stretching Surface.” The European Physical Journal Plus 129 (8): 1–10. https://doi.org/10.1140/epjp/i2014-14161-8.
  • Imtiaz, M., F. Mabood, T. Hayat, and A. Alsaedi. 2019. “Homogeneous–Heterogeneous Reactions in MHD Radiative Flow of Second Grade Fluid Due to a Curved Stretching Surface.” International Journal of Heat and Mass Transfer 145: 118781. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118781.
  • Ismoen, M., R. B. Mohamad, R. Kandasamy, S. F. Sufahani, F. Karim, and M. Sabirin. 2019. “Numerical Investigation for Convective Heat Transfer of CNT Nano-Fluids Over a Stretching Surface.” Materials Science Forum 961: 148–155. https://doi.org/10.4028/www.scientific.net/MSF.961.148.
  • Jyothi, K., P. S. Reddy, and M. S. Reddy. 2018. “Influence of Magnetic Field and Thermal Radiation on Convective Flow of SWCNTs-Water and MWCNTs-Water Nanofluid Between Rotating Stretchable Disks with Convective Boundary Conditions.” Powder Technology 331: 326–337. https://doi.org/10.1016/j.powtec.2018.03.020.
  • Kumar, T. S., and B. R. Kumar. 2019. “Effect of Homogeneous–Heterogeneous Reactions in MHD Stagnation Point Nanofluid Flow Toward a Cylinder with Nonuniform Heat Source or Sink.” In Applied Mathematics and Scientific Computing, 287–299. Cham: Birkhäuser. https://doi.org/10.1007/978-3-030-01123-9-29.
  • Kumar, R., R. Kumar, M. Sheikholeslami, and A. J. Chamkha. 2019. “Irreversibility Analysis of the Three Dimensional Flow of Carbon Nanotubes Due to Nonlinear Thermal Radiation and Quartic Chemical Reactions.” Journal of Molecular Liquids 274: 379–392. https://doi.org/10.1016/j.molliq.2018.10.149.
  • Lahmar, S., M. Kezzar, M. R. Eid, and M. R. Sari. 2020. “Heat Transfer of Squeezing Unsteady Nanofluid Flow Under the Effects of An Inclined Magnetic Field and Variable Thermal Conductivity.” Physica A: Statistical Mechanics and Its Applications 540: 123–138. https://doi.org/10.1016/j.physa.2019.123138.
  • Laxmi, T. V., and S. Bandari. 2016. “Effect of Nonlinear Thermal Radiation on Boundary Layer Flow of Viscous Fluid Over Nonlinear Stretching Sheet with Injection/Suction.” Journal of Applied Mathematics and Physics 4 (2): 307–319. https://doi.org/10.4236/jamp.2016.42038.
  • Lin, Y., L. Zheng, and X. Zhang. 2014. “Radiation Effects on Marangoni Convection Flow and Heat Transfer in Pseudo-Plastic Non-Newtonian Nanofluids with Variable Thermal Conductivity.” International Journal of Heat Mass Transfer 77: 708–716. https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.028.
  • Magyari, E., and A. Pantokratoras. 2011. “Note on the Effect of Thermal Radiation in the Linearized Rosseland Approximation on the Heat Transfer Characteristics of Various Boundary Layer Flows.” International Communications in Heat and Mass Transfer 38: 554–556. https://doi.org/10.1016/j.icheatmasstransfer.2011.03.006.
  • Mahabaleshwar, U. S., P. N. V. Kumar, and M. Sheremet. 2016. “Magnetohydrodynamics Flow of a Nanofluid Driven by a Stretching/Shrinking Sheet with Suction.” Springer Plus 5 (1): 1–9. https://doi.org/10.1186/s40064-016-3588-0.
  • Mahabaleshwar, U. S., K. R. Nagaraju, M. A. Sheremet, D. Baleanu, and E. Lorenzini. 2020. “Mass Transpiration on Newtonian Flow Over a Porous Stretching/Shrinking Sheet with Slip.” Chinese Journal of Physics 63: 130–137. https://doi.org/10.1016/j.cjph.2019.11.016.
  • Mahabaleshwar, U. S., K. R. Nagaraju, M. A. Sheremet, P. N. Vinay Kuma, and G. Lorenzini. 2019. “Effect of Mass Transfer and MHD Induced Navier's Slip Flow Due to a Non Linear Stretching Sheet.” Journal of Engineering Thermophysics 28 (4): 578–590. https://doi.org/10.1134/S1810232819040131.
  • Mansur, S., A. Ishak, and I. Pop. 2016. “MHD Homogeneous–Heterogeneous Reactions in a Nanofluid Due to a Permeable Shrinking Surface.” Journal of Applied Fluid Mechanics 9 (3): 1073–1079. https://doi.org/10.18869/acadpub.jafm.68.228.23044.
  • Merkin, J. H. 1996. “A Model for Isothermal Homogeneous–Heterogeneous Reactions in Boundary-Layer Flow.” Mathematical and Computer Modelling 24 (8): 125–136. https://doi.org/10.1016/0895-717700145-8.
  • Mushtaq, A., M. Mustafa, T. Hayat, and A. Alsaedi. 2015. “Numerical Study of the Non-Linear Radiation Heat Transfer Problem for the Flow of a Second-Grade Fluid.” Bulgarian Chemical Communications47 (2): 725–732.
  • Nadeem, S., R. U. Haq, and N. S. Akbar. 2014. “MHD Three-Dimensional Boundary Layer Flow of Casson Nanofluid Past a Linearly Stretching Sheet with Convective Boundary Condition.” IEEE Transactions on Nanotechnology 13 (1): 109–115. https://doi.org/10.1109/TNANO.2013.2293735.
  • Pal, D., and G. Mandal. 2019. “Magnetohydrodynamic Nonlinear Thermal Radiative Heat Transfer of Nanofluids Over a Flat Plate in a Porous Medium in Existence of Variable Thermal Conductivity and Chemical Reaction.” International Journal of Ambient Energy 42 (10): 1167–1177. https://doi.org/10.1080/01430750.2019.1592776.
  • Reddy, Y., R. Obula, M. S. Reddy, and P. S. Reddy. 2019. “MHD Boundary Layer Flow of SWCNT-Water and MWCNT-Water Nanofluid Over a Vertical Cone with Heat Generation/Absorption.” Heat Transfer-Asian Research 48 (2): 539–555. https://doi.org/10.1002/htj.21393.
  • Reddy, Y., and M. S. Reddy. 2019. “Heat and Mass Transfer Analysis of Single Walled Carbon Nanotubes and Multi Walled Carbon Nanotubes-Water Nanofluid Flow Over Porous Inclined Plate with Heat Generation/Absorption.” Journal of Nanofluids 8 (50): 1147–1157. https://doi.org/10.1166/jon.2019.1667.
  • Sreedevi, P., P. S. Reddy, and M. A. Sheremet. 2020. “Impact of Homogeneous–Heterogeneous Reactions on Heat and Mass Transfer Flow of Au−Eg and Ag−Eg Maxwell Nanofluid Past a Horizontal Stretched Cylinder.” Journal of Thermal Analysis and Calorimetry 141 (1): 533–546. https://doi.org/10.1007/s10973-020-09581-3.
  • Wang, C. Y. 1989. “Free Convection on a Vertical Stretching Surface.” Journal of Applied Mathematics and Mechanics (ZAMM) 69 (11): 418–420. https://doi.org/10.1002/zamm.19890691115.
  • Xu, N., and H. Xu. 2020. “A Modified Model for Isothermal Homogeneous and Heterogeneous Reactions in the Boundary-Layer Flow of a Nanofluid.” Applied Mathematics and Mechanics 41: 479–490. https://doi.org/10.1007/s10483-020-2589-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.