255
Views
0
CrossRef citations to date
0
Altmetric
Original Research Articles

Abnormal larval neuromuscular junction morphology and physiology in Drosophila prickle isoform mutants with known axonal transport defects and adult seizure behavior

, , , , &
Pages 65-73 | Received 22 Dec 2021, Accepted 20 Jun 2022, Published online: 01 Jul 2022
 

Abstract

Previous studies have demonstrated the striking mutational effects of the Drosophila planar cell polarity gene prickle (pk) on larval motor axon microtubule-mediated vesicular transport and on adult epileptic behavior associated with neuronal circuit hyperexcitability. Mutant alleles of the prickle-prickle (pkpk) and prickle-spiny-legs (pksple) isoforms (hereafter referred to as pk and sple alleles, respectively) exhibit differential phenotypes. While both pk and sple affect larval motor axon transport, only sple confers motor circuit and behavior hyperexcitability. However, mutations in the two isoforms apparently counteract to ameliorate adult motor circuit and behavioral hyperexcitability in heteroallelic pkpk/pksple flies. We have further investigated the consequences of altered axonal transport in the development and function of the larval neuromuscular junction (NMJ). We uncovered robust dominant phenotypes in both pk and sple alleles, including synaptic terminal overgrowth (as revealed by anti-HRP and -Dlg immunostaining) and poor vesicle release synchronicity (as indicated by synaptic bouton focal recording). However, we observed recessive alteration of synaptic transmission only in pk/pk larvae, i.e. increased excitatory junctional potential (EJP) amplitude in pk/pk but not in pk/+ or sple/sple. Interestingly, for motor terminal excitability sustained by presynaptic Ca2+ channels, both pk and sple exerted strong effects to produce prolonged depolarization. Notably, only sple acted dominantly whereas pk/+ appeared normal, but was able to suppress the sple phenotypes, i.e. pk/sple appeared normal. Our observations contrast the differential roles of the pk and sple isoforms and highlight their distinct, variable phenotypic expression in the various structural and functional aspects of the larval NMJ.

Acknowledgement

We thank Atulya Iyengar for discussion, Lydia Luton for fly stock maintenance.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work has been supported by USPHS NIH [grants AG051513 (AU, XX, TO, C-FW) and NS098590 (CFW, JRM)]. SE was supported by a fellowship from King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,079.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.