255
Views
0
CrossRef citations to date
0
Altmetric
Original Research Articles

Abnormal larval neuromuscular junction morphology and physiology in Drosophila prickle isoform mutants with known axonal transport defects and adult seizure behavior

, , , , &
Pages 65-73 | Received 22 Dec 2021, Accepted 20 Jun 2022, Published online: 01 Jul 2022

References

  • Atwood, H.L., Govind, C.K., & Wu, C.F. (1993). Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. Journal of Neurobiology, 24 (8), 1008–1024. doi:10.1002/neu.480240803
  • Ayukawa, T., Akiyama, M., Mummery-Widmer, J.L., Stoeger, T., Sasaki, J., Knoblich, J.A., … Yamazaki, M. (2014). Dachsous-dependent asymmetric localization of spiny-legs determines planar cell polarity orientation in Drosophila. Cell Reports, 8 (2), 610–621. doi:10.1016/j.celrep.2014.06.009
  • Broadie, K.S., & Bate, M. (1993). Development of the Embryonic Neuromuscular Synapse of Drosophila melanogaster. The Journal of Neuroscience, 13 (1), 144–166. doi:10.1523/JNEUROSCI.13-01-00144.1993
  • Budnik, V., Koh, Y.H., Guan, B., Hartmann, B., Hough, C., Woods, D., & Gorczyca, M. (1996). Regulation of synapse structure and function by the Drosophila tumor suppressor gene dlg. Neuron, 17 (4), 627–640. doi:10.1016/s0896-6273(00)80196-8
  • Cho, B., Song, S., Wan, J.Y., & Axelrod, J.D. (2022). Prickle isoform participation in distinct polarization events in the Drosophila eye. PLOS One, 17 (2), e0262328. doi:10.1371/journal.pone.0262328
  • Dudel, J., & Kuffler, S.W. (1961). The quantal nature of transmission and spontaneous miniature potentials at the crayfish neuromuscular junction. The Journal of Physiology, 155, 514–529. doi:10.1113/jphysiol.1961.sp006644
  • Ehaideb, S.N., Iyengar, A., Ueda, A., Iacobucci, G.J., Cranston, C., Bassuk, A.G., … Manak, J.R. (2014). prickle modulates microtubule polarity and axonal transport to ameliorate seizures in flies. Proceedings of the National Academy of Sciences of the United States of America, 111 (30), 11187–11192. doi:10.1073/pnas.1403357111
  • Ehaideb, S.N., Wignall, E.A., Kasuya, J., Evans, W.H., Iyengar, A., Koerselman, H.L., … Manak, J.R. (2016). Mutation of orthologous prickle genes causes a similar epilepsy syndrome in flies and humans. Annals of Clinical and Translational Neurology, 3 (9), 695–707. doi:10.1002/acn3.334
  • Fatt, P., & Katz, B. (1952). Spontaneous subthreshold activity at motor nerve endings. The Journal of Physiology, 117 (1), 109–128.
  • Feng, Y., Ueda, A., & Wu, C.F. (2004). A modified minimal hemolymph-like solution, HL3. 1, for physiological recordings at the neuromuscular junctions of normal and mutant Drosophila larvae. Journal of Neurogenetics, 18(2), 377–402. doi:10.1080/01677060490894522
  • Frankel, A., & Brousseau, G. (1968). Drosophila medium that does not require dried yeast. Drosophila Information Service, 43, 184.
  • Ganetzky, B., & Wu, C.F. (1982). Drosophila mutants with opposing effects on nerve excitability: Genetic and spatial interactions in repetitive firing. Journal of Neurophysiology, 47(3), 501–514. doi:10.1152/jn.1982.47.3.501
  • Ganetzky, B., & Wu, C.F. (1983). Neurogenetic analysis of potassium currents in Drosophila: Synergistic effects on neuromuscular transmission in double mutants. Journal of Neurogenetics, 1 (1), 17–28. doi:10.3109/01677068309107069
  • Gubb, D., & García-Bellido, A. (1982). A genetic analysis of the determination of cuticular polarity during development in Drosophila melanogaster. Journal of Embryology and Experimental Morphology, 68, 37–57. doi:10.1242/dev.68.1.37
  • Gubb, D., Green, C., Huen, D., Coulson, D., Johnson, G., Tree, D., … Roote, J. (1999). The balance between isoforms of the Prickle LIM domain protein is critical for planar polarity in Drosophila imaginal discs. Genes & Development, 13 (17), 2315–2327. doi:10.1101/gad.13.17.2315
  • Jan, L.Y., & Jan, Y.N. (1976a). Properties of the larval neuromuscular junction in Drosophila melanogaster. The Journal of Physiology, 262 (1), 189–214. doi:10.1113/jphysiol.1976.sp011592
  • Jan, L.Y., & Jan, Y.N. (1976b). L-glutamate as an excitatory transmitter at the Drosophila larval neuromuscular junction. The Journal of Physiology, 262 (1), 215–236. doi:10.1113/jphysiol.1976.sp011593
  • Jan, L.Y., & Jan, Y.N. (1982). Antibodies to horseradish peroxidase as specific neuronal markers in Drosophila and in grasshopper embryos. Proceedings of the National Academy of Sciences of the United States of America, 79 (8), 2700–2704. doi:10.1073/pnas.79.8.2700
  • Jan, Y.N., Jan, L.Y., & Dennis, M.J. (1977). Two mutations of synaptic transmission in Drosophila. Proceedings of the Royal Society of London. Series B, Biological Sciences, 198 (1130), 87–108. doi:10.1098/rspb.1977.0087
  • Kasuya, J., Iyengar, A., Chen, H.L., Lansdon, P., Wu, C.F., & Kitamoto, T. (2019). Milk-whey diet substantially suppresses seizure-like phenotypes of paraShu, a Drosophila voltage-gated sodium channel mutant. Journal of Neurogenetics, 33 (3), 164–178. doi:10.1080/01677063.2019.1597082
  • Katz, B., & Miledi, R. (1967). A study of synaptic transmission in the absence of nerve impulses. The Journal of Physiology, 192 (2), 407–436. doi:10.1113/jphysiol.1967.sp008307
  • Katz, B., & Miledi, R. (1969). Spontaneous and evoked activity of motor nerve endings in calcium Ringer. The Journal of Physiology, 203 (3), 689–706. doi:10.1113/jphysiol.1969.sp008887
  • Kawasaki, F., Felling, R., & Ordway, R.W. (2000). A temperature-sensitive paralytic mutant defines a primary synaptic calcium channel in Drosophila. The Journal of Neuroscience 20 (13), 4885–4889. doi:10.1523/JNEUROSCI.20-13-04885.2000
  • Kurdyak, P., Atwood, H.L., Stewart, B.A., & Wu, C.F. (1994). Differential physiology and morphology of motor axons to ventral longitudinal muscles in larval Drosophila. The Journal of Comparative Neurology, 350 (3), 463–472. doi:10.1002/cne.903500310
  • Lee, J., Ueda, A., & Wu, C.F. (2014). Distinct roles of Drosophila cacophony and Dmca1D Ca2+ channels in synaptic homeostasis: Genetic interactions with slowpoke Ca2+-activated BK channels in presynaptic excitability and postsynaptic response. Developmental Neurobiology, 74 (1), 1–4557. doi:10.1002/dneu.22120
  • Paemka, L., Mahajan, V.B., Skeie, J.M., Sowers, L.P., Ehaideb, S.N., Gonzalez-Alegre, P., … Bassuk, A.G. (2013). PRICKLE1 interaction with SYNAPSIN I reveals a role in autism spectrum disorders. PLOS One, 8 (12), e80737. doi:10.1371/journal.pone.0080737
  • Parnas, D., Haghighi, P., Fetter, R.D., Kim, S.W., & Goodman, C.S. (2001). Regulation of postsynaptic structure and protein localization by the Rho-type guanine nucleotide exchange factor dPix. Neuron, 32 (3), 415–424. doi:10.1016/S0896-6273(01)00485-8
  • Peng, I.F., & Wu, C.F. (2007). Differential contributions of Shaker and Shab K+ currents to neuronal firing patterns in Drosophila. Journal of Neurophysiology, 97 (1), 780–794. doi:10.1152/jn.01012.2006
  • Renger, J.J., Ueda, A., Atwood, H.L., Govind, C.K., & Wu, C.F. (2000). Role of cAMP cascade in synaptic stability and plasticity: Ultrastructural and physiological analyses of individual synaptic boutons in Drosophila memory mutants. The Journal of Neuroscience, 20 (11), 3980–3992. doi:10.1523/JNEUROSCI.20-11-03980.2000
  • Singh, S., & Wu, C.F. (1999). Ionic currents in larval muscles of Drosophila. International Review of Neurobiology, 43, 191–220. doi:10.1016/s0074-7742(08)60546-2
  • Sowers, L.P., Loo, L., Wu, Y., Campbell, E., Ulrich, J.D., Wu, S., … Bassuk, A.G. (2013). Disruption of the non-canonical Wnt gene PRICKLE2 leads to autism-like behaviors with evidence for hippocampal synaptic dysfunction. Molecular Psychiatry, 18 (10), 1077–1089. doi:10.1038/mp.2013.71
  • Sowers, L.P., Yin, T., Mahajan, V.B., & Bassuk, A.G. (2014). Defective motile cilia in prickle2-deficient mice. Journal of Neurogenetics, 28 (1–2), 146–152. doi:10.3109/01677063.2014.885966
  • Tao, H., Manak, J.R., Sowers, L., Mei, X., Kiyonari, H., Abe, T., … Bassuk, A.G. (2011). Mutations in Prickle orthologs cause seizures in flies, mice, and humans. American Journal of Human Genetics, 88 (2), 138–149. doi:10.1016/j.ajhg.2010.12.012
  • Todd, B.P., & Bassuk, A.G. (2018). A de novo mutation in PRICKLE1 associated with myoclonic epilepsy and autism spectrum disorder. Journal of Neurogenetics, 32 (4), 313–315. doi:10.1080/01677063.2018.1473862
  • Tree, D.R.P., Shulman, J.M., Rousset, R., Scott, M.P., Gubb, D., & Axelrod, J.D. (2002). Prickle mediates feedback amplification to generate asymmetric planar cell polarity signaling. Cell, 109 (3), 371–381. doi:10.1016/S0092-8674(02)00715-8
  • Ueda, A., & Wu, C.F. (2006). Distinct frequency-dependent regulation of nerve terminal excitability and synaptic transmission by IA and IK potassium channels revealed by Drosophila Shaker and Shab mutations. The Journal of Neuroscience, 26 (23), 6238–6248. doi:10.1523/JNEUROSCI.0862-06.2006
  • Ueda, A., & Wu, C.F. (2009). Role of rut adenylyl cyclase in the ensemble regulation of presynaptic terminal excitability: Reduced synaptic strength and precision in a Drosophila memory mutant. Journal of Neurogenetics, 23 (1-2), 185–199. doi:10.1080/01677060802471726
  • Ueda, A., & Wu, C.F. (2012). Cyclic adenosine monophosphate metabolism in synaptic growth, strength, and precision: neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenylyl cyclase mutations. Journal of Neurogenetics, 26 (1), 64–81. doi:10.3109/01677063.2011.652752
  • Ueda, A., & Wu, C.F. (2015). The role of cAMP in synaptic homeostasis in response to environmental temperature challenges and hyperexcitability mutations. Frontiers in Cellular Neuroscience, 9, 10. doi:10.3389/fncel.2015.00010
  • Vasin, A., Zueva, L., Torrez, C., Volfson, A., Littleton, J.T., & Bykhovskaia, M. (2014). Synapsin regulates activity-dependent outgrowth of synaptic boutons at the Drosophila neuromuscular junction. The Journal of Neuroscience, 34 (32), 10554–10563. doi:10.1523/JNEUROSCI.5074-13.2014
  • Wu, C.F., Ganetzky, B., Jan, L.Y., Jan, Y.N., & Benzer, S. (1978). A Drosophila mutant with a temperature-sensitive block in nerve conduction. Proceedings of the National Academy of Sciences of the United States of America, 75 (8), 4047–4051. doi:10.1073/pnas.75.8.4047
  • Xing, X., & Wu, C.F. (2018a). Unraveling synaptic GCaMP signals: Differential excitability and clearance mechanisms underlying distinct Ca2+ dynamics in tonic and phasic excitatory, and aminergic modulatory motor terminals in Drosophila. Eneuro, 5 (1), e0362–17.2018. doi:10.1523/ENEURO.0362-17.2018
  • Xing, X., & Wu, C.F. (2018b). Inter-relationships among physical dimensions, distal–proximal rank orders, and basal GCaMP fluorescence levels in Ca2+ imaging of functionally distinct synaptic boutons at Drosophila neuromuscular junctions. Journal of Neurogenetics, 32 (3), 195–208. doi:10.1080/01677063.2018.1504043
  • Zhong, Y., Budnik, V., & Wu, C.F. (1992). Synaptic plasticity in Drosophila memory and hyperexcitable mutants: role of cAMP cascade. The Journal of Neuroscience, 12(2), 644–651. doi:10.1523/JNEUROSCI.12-02-00644.1992

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.