196
Views
2
CrossRef citations to date
0
Altmetric
Research Article

The influence of storage relative humidity on aerosolization of co-spray dried powders of hygroscopic kanamycin with the hydrophobic drug rifampicin

, &
Pages 1205-1213 | Received 20 Dec 2018, Accepted 09 Apr 2019, Published online: 06 May 2019
 

Abstract

The purpose of this study was to investigate the influence of storage humidity on in vitro aerosolization and physicochemical properties of co-spray dried powders of kanamycin with rifampicin. The powders were stored for one-month in an open Petri dish at different relative humidities (RHs) (15%, 43%, and 75%) and 25 ± 2 °C. The in vitro aerosolization (fine particle fraction, FPF) of the powders was determined by a next generation impactor (NGI). The moisture content, particle morphology and crystallinity of the powders were determined by Karl Fischer titration, scanning electron microscopy, and X-ray powder diffractometry, respectively. At all RH, the FPF of hydrophobic rifampicin-only powder was unaffected but the FPF of hygroscopic kanamycin-only powder significantly decreased even at 43% RH. The kanamycin-only particles fused together, crystallized and formed hard cakes at 75% RH. The aerosolization of kanamycin and rifampicin in the combination powders remained unaffected at 15% and 43% RH, but aerosolization significantly decreased at 75% RH. Enrichment of the surface of the particles with hydrophobic rifampicin did not protect the combination powders from moisture uptake but it prevented particle agglomeration up to 43% RH. At 75% RH, the moisture uptake led to agglomeration of the particles of the combination powder particles and consequently an increase in aerodynamic diameter. Further studies are required to investigate how rifampicin enrichment prevents particle agglomeration, the possible mechanisms (e.g. particle interactions due to capillary forces or electrostatic forces) for the changes in the aerosolization and changes in surface composition during storage.

Acknowledgments

Mohammad AM Momin would like to acknowledge University of Otago, Dunedin, New Zealand for a doctoral scholarship and publishing bursary.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by Doctoral scholarship and publishing bursary by University of Otago, New Zealand.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.