535
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Nanocomposite scaffolds for myogenesis revisited: Functionalization with carbon nanomaterials and spectroscopic analysis

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 129-156 | Published online: 25 May 2017
 

ABSTRACT

Skeletal muscle injuries are extremely common because skeletal muscle is quite frequently used in the human body, and these injuries can cause serious health implications. Currently, grafting and pharmacological therapies are the most common therapeutic methods for treating and repairing the skeletal muscle damages, but both therapeutic methods have significant limitations. Therefore, in recent years, the tissue engineering approaches have attracted much attention in biomedical and bioengineering fields. In particular, up-to-date studies have focused on the novel strategies aimed at promoting and enhancing the regeneration of skeletal muscle tissue by using tissue engineering scaffolds. Although the tissue engineering scaffolds can be readily fabricated with conventional biocompatible materials, such as polymer, ceramic, or metallic materials, the carbon nanomaterials (CNMs) are the most fascinating candidates as a scaffold material due to their favorable biocompatibility and extraordinary physicochemical, electronic, mechanical, and thermal properties. The aim of this review is to summarize some of the recent reports concerning the nanocomposite scaffolds functionalized with CNMs and to highlight promising perspective for the applications of CNMs as skeletal tissue engineering scaffolds. In addition, it is also discussed how the spectroscopic analysis can be employed for analyzing CNMs and nanocomposite scaffolds.

Funding

This study was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MEST; No. 2015M3A9E2028643) and Basic Science Research Program through the NRF of Korea funded by the Ministry of Education (No. 2016R1D1A1B03931076).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 678.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.