535
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Nanocomposite scaffolds for myogenesis revisited: Functionalization with carbon nanomaterials and spectroscopic analysis

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon show all

References

  • O'Brien, F. J. (2011) Biomaterials & scaffolds for tissue engineering. Mater. Today 14(3): 88–95.
  • Baughman, R. H., Zakhidov, A. A., and De Heer, W. A. (2002) Carbon nanotubes – The route toward applications. Science 297(5582): 787–792.
  • Tran, P. A., Zhang, L., and Webster, T. J. (2009) Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv. Drug Del. Rev. 61(12): 1097–1114.
  • Hopley, E. L., Salmasi, S., Kalaskar, D. M., and Seifalian, A. M. (2014) Carbon nanotubes leading the way forward in new generation 3D tissue engineering. Biotechnol. Adv. 32(5): 1000–1014.
  • Baker, M. J., Trevisan, J., Bassan, P., Bhargava, R., Butler, H. J., Dorling, K. M., Fielden, P. R., Fogarty, S. W., Fullwood, N. J., and Heys, K. A. (2014) Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 9(8): 1771–1791.
  • Kim, M. S., Lee, M. H., Kwon, B.-J., Koo, M.-A., Seon, G. M., Lee, J. H., Han, D.-W., and Park, J.-C. (2016) Golgi polarization effects on infiltration of mesenchymal stem cells into electrospun scaffolds by fluid shear stress: Analysis by confocal microscopy and Fourier transform infrared spectroscopy. Appl. Spectrosc. Rev. 51(7–9): 570–581.
  • Park, K. O., Lee, J. H., Park, J. H., Shin, Y. C., Huh, J. B., Bae, J.-H., Kang, S. H., Hong, S. W., Kim, B., and Yang, D. J. (2016) Graphene oxide-coated guided bone regeneration membranes with enhanced osteogenesis: Spectroscopic analysis and animal study. Appl. Spectrosc. Rev. 51(7–9): 540–551.
  • Alekseev, S. A., Lysenko, V., Zaitsev, V. N., and Barbier, D. (2007) Application of infrared interferometry for quantitative analysis of chemical groups grafted onto the internal surface of porous silicon nanostructures. J. Phys. Chem. C 111(42): 15217–15222.
  • Fodor, B., Agocs, E., Bardet, B., Defforge, T., Cayrel, F., Alquier, D., Fried, M., Gautier, G., and Petrik, P. (2016) Porosity and thickness characterization of porous Si and oxidized porous Si layers – An ultraviolet–visible–mid infrared ellipsometry study. Microporous Mesoporous Mater. 227: 112–120.
  • Nagre, R. D., Zhao, L., Frimpong, I. K., and Zhao, Q.-M. (2016) Assessment of two prop-2-enamide-based polyelectrolytes as property enhancers in aqueous bentonite mud. Chem. Pap. 70(2): 206–217.
  • Katti, K. S., Katti, D. R., and Dash, R. (2008) Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Biomed. Mater. 3(3): 034122.
  • Hong, Z., Reis, R. L., and Mano, J. F. (2008) Preparation and in vitro characterization of scaffolds of poly (L-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomater. 4(5): 1297–1306.
  • Prabhakaran, M. P., Venugopal, J., and Ramakrishna, S. (2009) Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater. 5(8): 2884–2893.
  • Depan, D., Surya, P. K. C. V., Girase, B., and Misra, R. D. K. (2011) Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering. Acta Biomater. 7(5): 2163–2175.
  • Kumirska, J., Czerwicka, M., Kaczyński, Z., Bychowska, A., Brzozowski, K., Thöming, J., and Stepnowski, P. (2010) Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar. Drugs 8(5): 1567–1636.
  • Casey, A., Herzog, E., Davoren, M., Lyng, F. M., Byrne, H. J., and Chambers, G. (2007) Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon 45(7): 1425–1432.
  • Kamrani, A. K., and Nasr, E. A. (2010) Engineering materials: An overview. In Engineering design and rapid prototyping, Kamrani, A. K. and Nasr, E. A., Eds., Springer US, Boston, MA, pp. 295–311.
  • Wang, J. and Qu, X. (2013) Recent progress in nanosensors for sensitive detection of biomolecules. Nanoscale 5(9): 3589–3600.
  • Shim, M., Shi Kam, N. W., Chen, R. J., Li, Y., and Dai, H. (2002) Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett. 2(4): 285–288.
  • Bianco, A., Kostarelos, K., and Prato, M. (2011) Making carbon nanotubes biocompatible and biodegradable. Chem. Commun. 47(37): 10182–10188.
  • Feng, L., and Liu, Z. (2011) Graphene in biomedicine: Opportunities and challenges. Nanomedicine 6(2): 317–324.
  • Shen, H., Zhang, L., Liu, M., and Zhang, Z. (2012) Biomedical applications of graphene. Theranostics 2(3): 283–294.
  • Pinto, A. M., Gonçalves, I. C., and Magalhães, F. D. (2013) Graphene-based materials biocompatibility: A review. Colloids Surf. B. Biointerfaces 111: 188–202.
  • Iijima, S. (1991) Helical microtubules of graphitic carbon. Nature 354(6348): 56–58.
  • Mauter, M. S., and Elimelech, M. (2008) Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 42(16): 5843–5859.
  • Edwards, S. L., Church, J. S., Werkmeister, J. A., and Ramshaw, J. A. M. (2009) Tubular micro-scale multiwalled carbon nanotube-based scaffolds for tissue engineering. Biomaterials 30(9): 1725–1731.
  • Liu, Z., Dong, X., Song, L., Zhang, H., Liu, L., Zhu, D., Song, C., and Leng, X. (2014) Carboxylation of multiwalled carbon nanotube enhanced its biocompatibility with L02 cells through decreased activation of mitochondrial apoptotic pathway. J. Biomed. Mater. Res. Part A 102(3): 665–673.
  • Li, X., Fan, Y., and Watari, F. (2010) Current investigations into carbon nanotubes for biomedical application. Biomed. Mater. 5(2): 022001.
  • Harrison, B. S., and Atala, A. (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28(2): 344–353.
  • Kar, T., Pattanayak, J., and Scheiner, S. (2001) Insertion of lithium ions into carbon nanotubes: An ab initio study. J. Phys. Chem. A 105(45): 10397–10403.
  • Li, X., Zhao, T., Sun, L., Aifantis, K. E., Fan, Y., Feng, Q., Cui, F., and Watari, F. (2016) The applications of conductive nanomaterials in the biomedical field. J. Biomed. Mater. Res. Part A 104(1): 322–339.
  • Zanello, L. P., Zhao, B., Hu, H., and Haddon, R. C. (2006) Bone cell proliferation on carbon nanotubes. Nano Lett. 6(3): 562–567.
  • Jan, E., and Kotov, N. A. (2007) Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett. 7(5): 1123–1128.
  • Yang, W., Thordarson, P., Gooding, J. J., Ringer, S. P., and Braet, F. (2007) Carbon nanotubes for biological and biomedical applications. Nanotechnology 18(41): 412001.
  • Abarrategi, A., Gutiérrez, M. C., Moreno-Vicente, C., Hortigüela, M. J., Ramos, V., López-Lacomba, J. L., Ferrer, M. L., and del Monte, F. (2008) Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 29(1): 94–102.
  • Wu, H.-C., Chang, X., Liu, L., Zhao, F., and Zhao, Y. (2010) Chemistry of carbon nanotubes in biomedical applications. J. Mater. Chem. 20(6): 1036–1052.
  • Ahadian, S., Ramón-Azcón, J., Estili, M., Liang, X., Ostrovidov, S., Shiku, H., Ramalingam, M., Nakajima, K., Sakka, Y., and Bae, H. (2014) Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication. Sci. Rep. 4: 4271.
  • McKeon‐Fischer, K. D., Flagg, D. H., and Freeman, J. W. (2011) Coaxial electrospun poly (ϵ‐caprolactone), multiwalled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol scaffold for skeletal muscle tissue engineering. J. Biomed. Mater. Res. Part A 99(3): 493–499.
  • Sirivisoot, S., and Harrison, B. S. (2011) Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds. Int. J. Nanomed. 6: 2483–2497.
  • Wang, W., Zhu, Y., Liao, S., and Li, J. (2014) Carbon nanotubes reinforced composites for biomedical applications. Biomed Res. Int. 2014: 518609.
  • Gupta, P., Sharan, S., Roy, P., and Lahiri, D. (2015) Aligned carbon nanotube reinforced polymeric scaffolds with electrical cues for neural tissue regeneration. Carbon 95: 715–724.
  • Boehm, H. P., Setton, R., and Stumpp, E. (1986) Nomenclature and terminology of graphite intercalation compounds. Carbon 24(2): 241–245.
  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A. (2004) Electric field effect in atomically thin carbon films. Science 306(5696): 666–669.
  • Shin, Y. C., Lee, J. H., Kim, M. J., Hong, S. W., Kim, B., Hyun, J. K., Choi, Y. S., Park, J.-C., and Han, D.-W. (2015) Stimulating effect of graphene oxide on myogenesis of C2C12 myoblasts on RGD peptide-decorated PLGA nanofiber matrices. J. Biol. Eng. 9(1): 22.
  • Shin, Y. C., Lee, J. H., Jin, O. S., Kang, S. H., Hong, S. W., Kim, B., Park, J.-C., and Han, D.-W. (2015) Synergistic effects of reduced graphene oxide and hydroxyapatite on osteogenic differentiation of MC3T3-E1 preosteoblasts. Carbon 95: 1051–1060.
  • Lee, W. C., Lim, C. H., Su, C., Loh, K. P., and Lim, C. T. (2015) Cell‐assembled graphene biocomposite for enhanced chondrogenic differentiation. Small 11(8): 963–969.
  • Park, S. Y., Park, J., Sim, S. H., Sung, M. G., Kim, K. S., Hong, B. H., and Hong, S. (2011) Enhanced differentiation of human neural stem cells into neurons on graphene. Adv. Mater. 23(36).
  • Li, N., Zhang, Q., Gao, S., Song, Q., Huang, R., Wang, L., Liu, L., Dai, J., Tang, M., and Cheng, G. (2013) Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci. Rep. 3: 1604.
  • Lee, W. C., Lim, C. H. Y., Shi, H., Tang, L. A., Wang, Y., Lim, C. T., and Loh, K. P. (2011) Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5(9): 7334–7341.
  • Ku, S. H., and Park, C. B. (2013) Myoblast differentiation on graphene oxide. Biomaterials 34(8): 2017–2023.
  • Shin, Y. C., Lee, J. H., Jin, L., Kim, M. J., Kim, Y. J., Hyun, J. K., Jung, T. G., Hong, S. W., and Han, D. W. (2015) Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices. J. Nanobiotechnol. 13: 21.
  • Eremia, S. A. V., Vasilescu, I., Radoi, A., Litescu, S.-C., and Radu, G.-L. (2013) Disposable biosensor based on platinum nanoparticles-reduced graphene oxide-laccase biocomposite for the determination of total polyphenolic content. Talanta 110: 164–170.
  • Brondani, D., Scheeren, C. W., Dupont, J., and Vieira, I. C. (2009) Biosensor based on platinum nanoparticles dispersed in ionic liquid and laccase for determination of adrenaline. Sens. Actuator B 140(1): 252–259.
  • Deryabin, D. G., Efremova, L. V., Vasilchenko, A. S., Saidakova, E. V., Sizova, E. A., Troshin, P. A., Zhilenkov, A. V., and Khakina, E. A. (2015) A zeta potential value determines the aggregate's size of penta-substituted [60]fullerene derivatives in aqueous suspension whereas positive charge is required for toxicity against bacterial cells. J. Nanobiotechnol. 13(1): 50.
  • Dworak, N., Wnuk, M., Zebrowski, J., Bartosz, G., and Lewinska, A. (2014) Genotoxic and mutagenic activity of diamond nanoparticles in human peripheral lymphocytes in vitro. Carbon 68: 763–776.
  • Nath, A. (2013) A physical approach to monitoring biological activity of nanoparticulates. In New and future developments in catalysis, Nath, A., and Suib, S., Eds., Elsevier Inc. Amsterdam, the Netherlands, pp. 175–188, Chapter 7.
  • Gao, X., Xu, H., Shang, J., Yuan, L., Zhang, Y., Wang, L., Zhang, W., Luan, X., Hu, G., and Chu, H. (2017) Ozonized carbon black induces mitochondrial dysfunction and DNA damage. Environ. Toxicol. 32(3): 944–955.
  • Kisin, E. R., Murray, A. R., Sargent, L., Lowry, D., Chirila, M., Siegrist, K. J., Schwegler-Berry, D., Leonard, S., Castranova, V., and Fadeel, B. (2011) Genotoxicity of carbon nanofibers: Are they potentially more or less dangerous than carbon nanotubes or asbestos? Toxicol. Appl. Pharmacol. 252(1): 1–10.
  • Liu, Z., Robinson, J. T., Tabakman, S. M., Yang, K., and Dai, H. (2011) Carbon materials for drug delivery & cancer therapy. Mater. Today 14(7): 316–323.
  • Montellano, A., Da Ros, T., Bianco, A., and Prato, M. (2011) Fullerene C60 as a multifunctional system for drug and gene delivery. Nanoscale 3(10): 4035–4041.
  • Purtov, K. V., Petunin, A. I., Burov, A. E., Puzyr, A. P., and Bondar, V. S. (2010) Nanodiamonds as carriers for address delivery of biologically active substances. Nanoscale Res. Lett. 5(3): 631.
  • Lin, Y. C., Perevedentseva, E., Tsai, L. W., Wu, K. T., and Cheng, C. L. (2012) Nanodiamond for intracellular imaging in the microorganisms in vivo. J. Biophotonics 5(11–12): 838–847.
  • Man, H., Sasine, J., Chow, E. K., and Ho, D. (2014) CHAPTER 7 nanodiamonds for drug delivery and diagnostics. In Nanodiamond, Man, H., Sasine, J., Chow, E. K., and Ho, D., Williams, O., Eds., Royal Society of Chemistry, London, UK, pp. 151–169.
  • Krishnan, V., Kasuya, Y., Ji, Q., Sathish, M., Shrestha, L. K., Ishihara, S., Minami, K., Morita, H., Yamazaki, T., and Hanagata, N. (2015) Vortex-aligned fullerene nanowhiskers as a scaffold for orienting cell growth. ACS Appl. Mater. Interfaces 7(28): 15667–15673.
  • Minami, K., Kasuya, Y., Yamazaki, T., Ji, Q., Nakanishi, W., Hill, J. P., Sakai, H., and Ariga, K. (2015) Highly ordered 1D fullerene crystals for concurrent control of macroscopic cellular orientation and differentiation toward large‐scale tissue engineering. Adv. Mater. 27(27): 4020–4026.
  • Li, X., Gao, H., Uo, M., Sato, Y., Akasaka, T., Feng, Q., Cui, F., Liu, X., and Watari, F. (2009) Effect of carbon nanotubes on cellular functions in vitro. J. Biomed. Mater. Res. Part A 91(1): 132–139.
  • Matsuoka, M., Akasaka, T., Totsuka, Y., and Watari, F. (2012) Carbon nanotube-coated silicone as a flexible and electrically conductive biomedical material. Mater. Sci. Eng. C: Biomimetic Supramol. Syst. 32(3): 574–580.
  • Ramón‐Azcón, J., Ahadian, S., Estili, M., Liang, X., Ostrovidov, S., Kaji, H., Shiku, H., Ramalingam, M., Nakajima, K., and Sakka, Y. (2013) Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers. Adv. Mater. 25(29): 4028–4034.
  • Kroustalli, A., Zisimopoulou, A. E., Koch, S., Rongen, L., Deligianni, D., Diamantouros, S., Athanassiou, G., Kokozidou, M., Mavrilas, D., and Jockenhoevel, S. (2013) Carbon nanotubes reinforced chitosan films: Mechanical properties and cell response of a novel biomaterial for cardiovascular tissue engineering. J. Mater. Sci. Mater. Med. 24(12): 2889–2896.
  • Fujie, T., Ahadian, S., Liu, H., Chang, H., Ostrovidov, S., Wu, H., Bae, H., Nakajima, K., Kaji, H., and Khademhosseini, A. (2013) Engineered nanomembranes for directing cellular organization toward flexible biodevices. Nano Lett. 13(7): 3185–3192.
  • Ostrovidov, S., Shi, X., Zhang, L., Liang, X., Kim, S. B., Fujie, T., Ramalingam, M., Chen, M., Nakajima, K., and Al-Hazmi, F. (2014) Myotube formation on gelatin nanofibers – Multi-walled carbon nanotubes hybrid scaffolds. Biomaterials 35(24): 6268–6277.
  • Zhao, C., Andersen, H., Ozyilmaz, B., Ramaprabhu, S., Pastorin, G., and Ho, H. K. (2015) Spontaneous and specific myogenic differentiation of human mesenchymal stem cells on polyethylene glycol-linked multi-walled carbon nanotube films for skeletal muscle engineering. Nanoscale 7(43): 18239–18249.
  • Patel, A., Mukundan, S., Wang, W., Karumuri, A., Sant, V., Mukhopadhyay, S. M., and Sant, S. (2016) Carbon-based hierarchical scaffolds for myoblast differentiation: Synergy between nano-functionalization and alignment. Acta Biomater. 32: 77–88.
  • MacDonald, R. A., Laurenzi, B. F., Viswanathan, G., Ajayan, P. M., and Stegemann, J. P. (2005) Collagen–carbon nanotube composite materials as scaffolds in tissue engineering. J. Biomed. Mater. Res. Part A 74(3): 489–496.
  • Garibaldi, S., Brunelli, C., Bavastrello, V., Ghigliotti, G., and Nicolini, C. (2005) Carbon nanotube biocompatibility with cardiac muscle cells. Nanotechnology 17(2): 391.
  • Martinelli, V., Cellot, G., Toma, F. M., Long, C. S., Caldwell, J. H., Zentilin, L., Giacca, M., Turco, A., Prato, M., and Ballerini, L. (2013) Carbon nanotubes instruct physiological growth and functionally mature syncytia: Nongenetic engineering of cardiac myocytes. ACS Nano 7(7): 5746–5756.
  • Granados-Riveron, J. T., Ghosh, T. K., Pope, M., Bu'Lock, F., Thornborough, C., Eason, J., Kirk, E. P., Fatkin, D., Feneley, M. P., and Harvey, R. P. (2010) α-Cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects. Hum. Mol. Genet. 19(20): 4007–4016.
  • Shin, Y. C., Lee, J. H., Jin, L., Kim, M. J., Kim, C., Hong, S. W., Oh, J. W., and Han, D.-W. (2015) Cell-adhesive matrices composed of RGD peptide-displaying M13 bacteriophage/poly(lactic-co-glycolic acid) nanofibers beneficial to myoblast differentiation. J. Nanosci. Nanotechnol. 15(10): 7907–7912.
  • Kim, M. J., Lee, J. H., Shin, Y. C., Jin, L., Hong, S. W., Han, D.-W., Kim, Y.-J., and Kim, B. (2015) Stimulated myogenic differentiation of C2C12 murine myoblasts by using graphene oxide. J. Korean Phys. Soc. 67(11): 1910–1914.
  • Wang, X.-D., Leow, C. C., Zha, J., Tang, Z., Modrusan, Z., Radtke, F., Aguet, M., de Sauvage, F. J., and Gao, W.-Q. (2006) Notch signaling is required for normal prostatic epithelial cell proliferation and differentiation. Dev. Biol. 290(1): 66–80.
  • Clark, P., Dunn, G., Knibbs, A., and Peckham, M. (2002) Alignment of myoblasts on ultrafine gratings inhibits fusion in vitro. Int. J. Biochem. Cell Biol. 34(7): 816–825.
  • Yamamoto, D. L., Csikasz, R. I., Li, Y., Sharma, G., Hjort, K., Karlsson, R., and Bengtsson, T. (2008) Myotube formation on micro-patterned glass: Intracellular organization and protein distribution in C2C12 skeletal muscle cells. J. Histochem. Cytochem. 56(10): 881–892.
  • Dugan, J. M., Gough, J. E., and Eichhorn, S. J. (2010) Directing the morphology and differentiation of skeletal muscle cells using oriented cellulose nanowhiskers. Biomacromolecules 11(9): 2498–2504.
  • Ding, X., Liu, H., and Fan, Y. (2015) Graphene‐based materials in regenerative medicine. Adv. Healthc. Mater. 4(10): 1451–1468.
  • Goenka, S., Sant, V., and Sant, S. (2014) Graphene-based nanomaterials for drug delivery and tissue engineering. J. Controlled Release 173: 75–88.
  • Mak, K. F., Lui, C. H., Shan, J., and Heinz, T. F. (2009) Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102(25): 256405.
  • Tang, B., Guoxin, H., and Gao, H. (2010) Raman spectroscopic characterization of graphene. Appl. Spectrosc. Rev. 45(5): 369–407.
  • Ferrari, A. C. and Basko, D. M. (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8(4): 235–246.
  • Unnithan, A. R., Park, C. H., and Kim, C. S. (2016) Nanoengineered bioactive 3D composite scaffold: A unique combination of graphene oxide and nanotopography for tissue engineering applications. Compos. B Eng. 90: 503–511.
  • Jo, H., Sim, M., Kim, S., Yang, S., Yoo, Y., Park, J.-H., Yoon, T. H., Kim, M.-G., and Lee, J. Y. (2016) Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation. Acta Biomater. 48: 100–109.
  • Randviir, E. P. and Banks, C. E. (2013) Electrochemical impedance spectroscopy: An overview of bioanalytical applications. Anal. Methods 5(5): 1098–1115.
  • Kim, S. J., Cho, K. W., Cho, H. R., Wang, L., Park, S. Y., Lee, S. E., Hyeon, T., Lu, N., Choi, S. H., and Kim, D. H. (2016) Stretchable and transparent biointerface using cell‐sheet–graphene hybrid for electrophysiology and therapy of skeletal muscle. Adv. Funct. Mater. 26(19): 3207–3217.
  • Golafshan, N., Kharaziha, M., and Fathi, M. (2017) Tough and conductive hybrid graphene-PVA: Alginate fibrous scaffolds for engineering neural construct. Carbon 111: 752–763.
  • Fan, H., Wang, L., Zhao, K., Li, N., Shi, Z., Ge, Z., and Jin, Z. (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules 11(9): 2345–2351.
  • Pramanik, N., De, J., Basu, R. K., Rath, T., and Kundu, P. P. (2016) Fabrication of magnetite nanoparticle doped reduced graphene oxide grafted polyhydroxyalkanoate nanocomposites for tissue engineering application. RSC Adv. 6(52): 46116–46133.
  • Wen, S., Wang, Z., Zheng, X., and Wang, X. (2017) Improved mechanical strength of porous chitosan scaffold by graphene coatings. Mater. Lett. 186: 17–20.
  • Zhang, C., Wang, L., Zhai, T., Wang, X., Dan, Y., and Turng, L.-S. (2016) The surface grafting of graphene oxide with poly (ethylene glycol) as a reinforcement for poly (lactic acid) nanocomposite scaffolds for potential tissue engineering applications. J. Mech. Behav. Biomed. Mater. 53: 403–413.
  • Sayyar, S., Murray, E., Thompson, B. C., Gambhir, S., Officer, D. L., and Wallace, G. G. (2013) Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon 52: 296–304.
  • Bajaj, P., Rivera, J. A., Marchwiany, D., Solovyeva, V., and Bashir, R. (2014) Graphene‐based patterning and differentiation of C2C12 myoblasts. Adv. Healthc. Mater. 3(7): 995–1000.
  • Ahadian, S., Estili, M., Surya, V. J., Ramón-Azcón, J., Liang, X., Shiku, H., Ramalingam, M., Matsue, T., Sakka, Y., and Bae, H. (2015) Facile and green production of aqueous graphene dispersions for biomedical applications. Nanoscale 7(15): 6436–6443.
  • Patel, A., Xue, Y., Mukundan, S., Rohan, L. C., Sant, V., Stolz, D. B., and Sant, S. (2016) Cell-instructive graphene-containing nanocomposites induce multinucleated myotube formation. Ann. Biomed. Eng. 44(6): 2036–2048.
  • Krueger, E., Chang, A. N., Brown, D., Eixenberger, J., Brown, R., Rastegar, S., Yocham, K. M., Cantley, K. D., and Estrada, D. (2016) Graphene foam as a three-dimensional platform for myotube growth. ACS Biomater. Sci. Eng. 2(8): 1234–1241.
  • Esrafilzadeh, D., Jalili, R., Stewart, E. M., Aboutalebi, S. H., Razal, J. M., Moulton, S. E., and Wallace, G. G. (2016) High‐performance multifunctional graphene‐PLGA fibers: Toward biomimetic and conducting 3D scaffolds. Adv. Funct. Mater. 26(18): 3105–3117.
  • Shi, X., Chang, H., Chen, S., Lai, C., Khademhosseini, A., and Wu, H. (2012) Regulating cellular behavior on few‐layer reduced graphene oxide films with well‐controlled reduction states. Adv. Funct. Mater. 22(4): 751–759.
  • Chaudhuri, B., Bhadra, D., Mondal, B., and Pramanik, K. (2014) Biocompatibility of electrospun graphene oxide–poly (ϵ-caprolactone) fibrous scaffolds with human cord blood mesenchymal stem cells derived skeletal myoblast. Mater. Lett. 126: 109–112.
  • Ahadian, S., Ramón-Azcón, J., Chang, H., Liang, X., Kaji, H., Shiku, H., Nakajima, K., Ramalingam, M., Wu, H., and Matsue, T. (2014) Electrically regulated differentiation of skeletal muscle cells on ultrathin graphene-based films. RSC Adv. 4(19): 9534–9541.
  • Chaudhuri, B., Bhadra, D., Moroni, L., and Pramanik, K. (2015) Myoblast differentiation of human mesenchymal stem cells on graphene oxide and electrospun graphene oxide–polymer composite fibrous meshes: Importance of graphene oxide conductivity and dielectric constant on their biocompatibility. Biofabrication 7(1): 015009.
  • Ciriza, J., del Burgo, L. S., Virumbrales-Muñoz, M., Ochoa, I., Fernandez, L. J., Orive, G., Hernandez, R. M., and Pedraz, J. L. (2015) Graphene oxide increases the viability of C2C12 myoblasts microencapsulated in alginate. Int. J. Pharm. 493(1): 260–270.
  • Lee, J. H., Lee, Y., Shin, Y. C., Kim, M. J., Park, J. H., Hong, S. W., Kim, B., Oh, J.-W., Park, K. D., and Han, D.-W. (2016) In situ forming gelatin/graphene oxide hydrogels for facilitated C2C12 myoblast differentiation. Appl. Spectrosc. Rev. 51(7–9): 527–539.
  • Mahmoudifard, M., Soleimani, M., Hatamie, S., Zamanlui, S., Ranjbarvan, P., Vossoughi, M., and Hosseinzadeh, S. (2016) The different fate of satellite cells on conductive composite electrospun nanofibers with graphene and graphene oxide nanosheets. Biomed. Mater. 11(2): 025006.
  • Chaudhuri, B., Mondal, B., Kumar, S., and Sarkar, S. C. (2016) Myoblast differentiation and protein expression in electrospun graphene oxide (GO)-poly (ϵ-caprolactone, PCL) composite meshes. Mater. Lett. 182: 194–197.
  • Paul, A., Hasan, A., Kindi, H. A., Gaharwar, A. K., Rao, V. T. S., Nikkhah, M., Shin, S. R., Krafft, D., Dokmeci, M. R., and Shum-Tim, D. (2014) Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8(8): 8050–8062.
  • Lee, T.-J., Park, S., Bhang, S. H., Yoon, J.-K., Jo, I., Jeong, G.-J., Hong, B. H., and Kim, B.-S. (2014) Graphene enhances the cardiomyogenic differentiation of human embryonic stem cells. Biochem. Biophys. Res. Commun. 452(1): 174–180.
  • Shin, Y. C., Jin, L., Lee, J. H., Jun, S., Hong, S. W., Kim, C.-S., Kim, Y.-J., Hyun, J. K., and Han, D.-W. (2017) Graphene oxide-incorporated PLGA-collagen fibrous matrices as biomimetic scaffolds for vascular smooth muscle cells. Sci. Adv. Mater. 9(2): 232–237.
  • Lampin, M., Warocquier‐Clérout, R., Legris, C., Degrange, M., and Sigot‐Luizard, M. (1997) Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J. Biomed. Mater. Res. 36(1): 99–108.
  • Chen, W., Villa-Diaz, L. G., Sun, Y., Weng, S., Kim, J. K., Lam, R. H. W., Han, L., Fan, R., Krebsbach, P. H., and Fu, J. (2012) Nanotopography influences adhesion, spreading, and self-renewal of human embryonic stem cells. ACS Nano, 6(5): 4094–4103.
  • Hernández-Cancel, G., Suazo-Dávila, D., Ojeda-Cruzado, A. J., García-Torres, D., Cabrera, C. R., and Griebenow, K. (2015) Graphene oxide as a protein matrix: Influence on protein biophysical properties. J. Nanobiotechnol. 13: 70.
  • Mendonça, M. C. P., Soares, E. S., de Jesus, M. B., Ceragioli, H. J., Ferreira, M. S., Catharino, R. R., and Cruz-Höfling, M. A. (2015) Reduced graphene oxide induces transient blood–brain barrier opening: An in vivo study. J. Nanobiotechnol. 13: 78.
  • Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., and Ruoff, R. S. (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7): 1558–1565.
  • Chen, W., Yan, L., and Bangal, P. R. (2010) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48(4): 1146–1152.
  • Lee, S. C., Some, S., Kim, S. W., Kim, S. J., Seo, J., Lee, J., Lee, T., Ahn, J.-H., Choi, H.-J., and Jun, S. C. (2015) Efficient direct reduction of graphene oxide by silicon substrate. Sci. Rep. 5: 12306.
  • Lee, J. H., Lee, S.-M., Shin, Y. C., Park, J. H., Hong, S. W., Kim, B., Lee, J. J., Lim, D., Lim, Y.-J., and Huh, J. B. (2016) Spontaneous osteodifferentiation of bone marrow-derived mesenchymal stem cells by hydroxyapatite covered with graphene nanosheets. J. Biomater. Tissue Eng. 6(10): 818–825.
  • Partha, R. and Conyers, J. L. (2009) Biomedical applications of functionalized fullerene-based nanomaterials. Int. J. Nanomed. 4: 261–275.
  • Chandra, S., Mitra, S., Laha, D., Bag, S., Das, P., Goswami, A., and Pramanik, P. (2011) Fabrication of multi-structure nanocarbons from carbon xerogel: A unique scaffold towards bio-imaging. Chem. Commun. 47(30): 8587–8589.
  • Liu, W., Wei, J., Chen, Y., Huo, P., and Wei, Y. (2013) Electrospinning of poly (L-lactide) nanofibers encapsulated with water-soluble fullerenes for bioimaging application. ACS Appl. Mater. Interfaces 5(3): 680–685.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.