99
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Probing binding mode between sodium acid pyrophosphate and albumin: multi-spectroscopic and molecular docking analysis

, , , &
Pages 1725-1732 | Received 31 Jan 2023, Accepted 05 Apr 2023, Published online: 01 Nov 2023
 

Abstract

Sodium acid pyrophosphate (SAPP) food additive is widely used as a preservative, bulking agent, chelating agent, emulsifier and pH regulator. It is also used as an improver of color and water retention capacity in the processing of various types of seafood, canned food, cooked meat and flour products. For the first time, we evaluated the SAPP interaction with bovine serum albumin (BSA) using spectroscopic methods including UV-Vis absorption, fluorescence spectroscopy, and surface plasmon resonance, and docking analysis to understand the mechanisms of complex formation and binding. The fluorescence intensity of BSA reduces when titrated with various concentrations of SAPP by forming a complex with BSA via a static quenching mechanism. The binding constant between BSA and SAPP decreased from 123,300 to 15,800 (M−1) with rising temperature, which indicates a decrement in complex formation owing to the interaction of SAPP with BSA. A negative ΔG° value means that SAPP binds spontaneously to BSA at all temperatures, and both ΔH° and ΔS° negative values indicate that hydrogen bonds (H-bonding) and van der Waals forces are the primary forces involved in the binding processes. The UV-Vis spectrum of BSA reduced upon increasing SAPP concentrations due to forming a new ground state complex between SAPP and BSA. Molecular docking study shows that residues Arg256, Ser259, Ser286, Ile 289 and Ala 290 play an important role in SAPP binding process to site I (subdomain IIA) of BSA through H-bonding and van der Waals forces, which is supported by the thermodynamic study.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Tabriz University of Medical Sciences (grant no: 71513).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.