99
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Probing binding mode between sodium acid pyrophosphate and albumin: multi-spectroscopic and molecular docking analysis

, , , &
Pages 1725-1732 | Received 31 Jan 2023, Accepted 05 Apr 2023, Published online: 01 Nov 2023

References

  • Alabbody, H. H. K. (2022) A sample of people’s attitudes towards consumption of processed foods… A prospective study. Innovations, 69, 78–83.
  • Azari-Anpar, M., Degraeve, P., Oulahal, N., Adt, I., Jahanbin, K., Demarigny, Y., Assifaoui, A., & Tabatabaei Yazdi, F. (2022). Interaction of Escherichia coli heat-labile enterotoxin B-pentamer with exopolysaccharides from Leuconostoc mesenteroides P35: Insights from surface plasmon resonance and molecular docking studies. Food Bioscience, 50, 102058. https://doi.org/10.1016/j.fbio.2022.102058
  • Azimirad, M., Javaheri-Ghezeldizaj, F., Soleymani, J., Ezzati Nazhad Dolatabadi, J., & Torbati, M. (2023) Spectroscopic aspects on the interaction of nisin with serum albumin: thermodynamic and kinetic studies. Bioimpacts, 13, 467–474. https://doi.org/10.34172/bi.2023.27754.
  • Azimirad, M., Javaheri-Ghezeldizaj, F., Yekta, R., Ezzati Nazhad Dolatabadi, J., & Torbati, M. (2023) Mechanistic and kinetic aspects of Natamycin interaction with serum albumin using spectroscopic and molecular docking methods. Arabian Journal of Chemistry, 16, 105043. https://doi.org/10.1016/j.arabjc.2023.105043.
  • Belatik, A., Hotchandani, S., Bariyanga, J., & Tajmir-Riahi, H. A. (2012). Binding sites of retinol and retinoic acid with serum albumins. European Journal of Medicinal Chemistry, 48, 114–123. https://doi.org/10.1016/j.ejmech.2011.12.002
  • Brodie, J., & Godber, J. (2000). Bakery processes, chemical leavening agents. Kirk‐Othmer Encyclopedia of Chemical Technology.
  • Cencic, A., & Chingwaru, W. (2010). The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients, 2(6), 611–625. https://doi.org/10.3390/nu2060611
  • Chakraborty, B., & Basu, S. (2009). Interaction of BSA with proflavin: A spectroscopic approach. Journal of Luminescence, 129(1), 34–39. https://doi.org/10.1016/j.jlumin.2008.07.012
  • Chang, Y.-F., Chen, S.-Y., Lee, C.-C., Chen, J., & Lai, C.-S. (2022). Easy and rapid approach to obtaining the binding affinity of biomolecular interactions based on the deep learning boost. Analytical Chemistry, 94(29), 10427–10434. https://doi.org/10.1021/acs.analchem.2c01620
  • Dehdasht-Heidari, N., Shareghi, B., Farhadian, S., & Momeni, L. (2021). Investigation of the interaction behavior between safranal and pepsin by spectral and MD simulation studies. Journal of Molecular Liquids, 344, 117903. https://doi.org/10.1016/j.molliq.2021.117903
  • Ezzati Nazhad Dolatabadi, J., Panahi-Azar, V., Barzegar, A., Jamali, A. A., Kheirdoosh, F., Kashanian, S., & Omidi, Y. (2014). Spectroscopic and molecular modeling studies of human serum albumin interaction with propyl gallate. RSC Advances, 4(110), 64559–64564. https://doi.org/10.1039/C4RA11103F
  • Faour-Klingbeil, D., & Todd, E. C. D. (2019). Prevention and control of foodborne diseases in Middle-East North African countries: A review of national control systems. International Journal of Environmental Research and Public Health, 17(1), 70. https://doi.org/10.3390/ijerph17010070
  • Fathi, F., Sharifi, M., Jafari, A., Kakavandi, N., Kashanian, S., Ezzati Nazhad Dolatabadi, J., & Rashidi, M.-R. (2019). Kinetic and thermodynamic insights into the interaction of albumin with piperacillin: Spectroscopic and molecular modeling approaches. Journal of Molecular Liquids, 296, 111770. https://doi.org/10.1016/j.molliq.2019.111770
  • Fu, J.-J., Sun, C., Tan, Z.-F., Zhang, G.-Y., Chen, G.-B., & Song, L. (2022). Nanocomplexes of curcumin and glycated bovine serum albumin: The formation mechanism and effect of glycation on their physicochemical properties. Food Chemistry, 368, 130651. https://doi.org/10.1016/j.foodchem.2021.130651
  • Gholami, A., Dehghan, G., Rashtbari, S., & Jouyban, A. (2022). Probing the interactions of lamotrigine and phenobarbital with tau protein: Experimental and molecular modeling studies. Iranian Journal of Pharmaceutical Research, 21(1), e129599. https://doi.org/10.5812/ijpr-129599
  • Haghaei, H., Norouzi, S., Zakariazadeh, M., & Soltani, S. (2022). Investigation of Atorvastatin interaction with human serum albumin: Evaluation of pH effect and competitive binding with warfarin. Journal of Research in Pharmacy, 26 (5), 1403–1410. https://doi.org/10.29228/jrp.229
  • Hou, C., Wang, Z., Li, X., Bai, Y., Chai, J., Li, X., Gao, J., & Xu, H. (2022). Study of modeling and optimization for predicting the acute toxicity of carbamate pesticides using the binding information with a carrier protein. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 273, 121038. https://doi.org/10.1016/j.saa.2022.121038
  • Jahanban-Esfahlan, A., Ostadrahimi, A., Jahanban-Esfahlan, R., Roufegarinejad, L., Tabibiazar, M., & Amarowicz, R. (2019). Recent developments in the detection of bovine serum albumin. International Journal of Biological Macromolecules, 138, 602–617. https://doi.org/10.1016/j.ijbiomac.2019.07.096
  • Javaheri-Ghezeldizaj, F., Mahmoudpour, M., Yekta, R., & Ezzati Nazhad Dolatabadi, J. (2020). Albumin binding study to sodium lactate food additive using spectroscopic and molecular docking approaches. Journal of Molecular Liquids, 310, 113259. https://doi.org/10.1016/j.molliq.2020.113259
  • Javaheri-Ghezeldizaj, F., Soleymani, J., Kashanian, S., Ezzati Nazhad Dolatabadi, J., & Dehghan, P. (2020). Multi-spectroscopic, thermodynamic, and molecular docking insights into the interaction of bovine serum albumin with calcium lactate. Microchemical Journal, 154, 104580. https://doi.org/10.1016/j.microc.2019.104580
  • Ji, G., Tian, J., Xing, F., & Feng, Y. (2022). Optical biosensor based on graphene and its derivatives for detecting biomolecules. International Journal of Molecular Sciences, 23(18), 10838. https://doi.org/10.3390/ijms231810838
  • Khalili, L., Dehghan, G., Akbar Moosavi-Movahedi, A., Yoon, Y., & Khataee, A. (2022). In vitro and silico insights into the molecular interaction mechanism of acetyl-shikonin with bovine serum albumin. Journal of Molecular Liquids, 365, 120191. https://doi.org/10.1016/j.molliq.2022.120191
  • Kragh-Hansen, U. (1990). Structure and ligand binding properties of human serum albumin. Danish Medical Bulletin, 37(1), 57–84.
  • Lakowicz, J. R. (1999). Introduction to fluorescence. In Principles of fluorescence spectroscopy (pp. 1–23). Springer.
  • Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy (3rd ed.). Springer.
  • Lee, B. J., Hendricks, D. G., & Cornforth, D. P. (1998). Effect of sodium phytate, sodium pyrophosphate, and sodium tripolyphosphate on physicochemical characteristics of restructured beef. Meat Science, 50(3), 273–283. https://doi.org/10.1016/s0309-1740(98)00002-3
  • Li, N., Yang, X., Chen, F., Zeng, G., Zhou, L., Li, X., & Tuo, X. (2022). Spectroscopic and in silico insight into the interaction between dicofol and human serum albumin. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 264, 120277. https://doi.org/10.1016/j.saa.2021.120277
  • Li, X., Yuan, Y., Zhao, R., Shao, D., & Bi, S. (2021). Assessment of the binding characteristics of residual marbofloxacin in animal‐derived food to bovine/human serum albumin by spectroscopy and molecular modeling. Luminescence: The Journal of Biological and Chemical Luminescence, 36(4), 977–985. https://doi.org/10.1002/bio.4022
  • Mahmoudpour, M., Karimzadeh, Z., Yekta, R., Torbati, M., & Ezzati Nazhad Dolatabadi, J. (2022). Exploring the binding mode between potassium bromate and bovine serum albumin: Multi-spectroscopic and molecular modeling analysis. Journal of Molecular Liquids, 348, 118060. https://doi.org/10.1016/j.molliq.2021.118060
  • Mu, H., Chen, S., Liu, F., Xiao, J., Huang, H., Zhang, Y., Sun, Y., Gao, X., Lei, H., & Yuan, X. (2019). Stereoselective interactions of lactic acid enantiomers with HSA: Spectroscopy and docking application. Food Chemistry, 270, 429–435. https://doi.org/10.1016/j.foodchem.2018.07.135
  • Orlov, A. V., Malkerov, J. A., Novichikhin, D. O., Znoyko, S. L., & Nikitin, P. I. (2022). Express high-sensitive detection of ochratoxin A in food by a lateral flow immunoassay based on magnetic bio labels. Food Chemistry, 383, 132427. https://doi.org/10.1016/j.foodchem.2022.132427
  • Rashtbari, S., Dehghan, G., Sadeghi, L., Sareminia, L., Iranshahy, M., Iranshahi, M., Khataee, A., & Yoon, Y. (2022). Interaction of bovine serum albumin with ellagic acid and urolithins A and B: Insights from surface plasmon resonance, fluorescence, and molecular docking techniques. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 162, 112913. https://doi.org/10.1016/j.fct.2022.112913
  • Rathgeber, B. M., & Waldroup, A. L. (1995). Antibacterial activity of a sodium acid pyrophosphate product in chiller water against selected bacteria on broiler carcasses. Journal of Food Protection, 58(5), 530–534. https://doi.org/10.4315/0362-028X-58.5.530
  • Raza, M., Jiang, Y., Ahmad, B., Rahman, A. U., Raza, S., Khan, A., Tahir, K., Hassan, S., Khan, S., & Yuan, Q. (2021). Biophysical investigation of interactions between sorbic acid and human serum albumin through spectroscopic and computational approaches. New Journal of Chemistry, 45(17), 7682–7693. https://doi.org/10.1039/D0NJ06276F
  • Ritz, E., Hahn, K., Ketteler, M., Kuhlmann, M. K., & Mann, J. (2012). Phosphate additives in food—A health risk. Deutsches Ärzteblatt International, 109(4), 49.
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20(11), 3096–3102. https://doi.org/10.1021/bi00514a017
  • Shaghaghi, M., Dehghan, G., Rashtbari, S., Soltani, S., & Dehghan, G. (2022). Molecular interactions of danofloxacin with bovine serum albumin: An experimental and theoretical investigation. Iranian Journal of Analytical Chemistry, 9(2), 1-9.
  • Shaghaghi, M., Rashtbari, S., Vejdani, S., Dehghan, G., Jouyban, A., & Yekta, R. (2020). Exploring the interactions of a Tb (III)–quercetin complex with serum albumins (HSA and BSA): Spectroscopic and molecular docking studies. Luminescence: The Journal of Biological and Chemical Luminescence, 35(4), 512–524. https://doi.org/10.1002/bio.3757
  • Tang, D., Li, H.-J., Li, P., Wen, X.-D., & Qian, Z.-M. (2008). Interaction of bioactive components caffeoylquinic acid derivatives in Chinese medicines with bovine serum albumin. Chemical & Pharmaceutical Bulletin, 56(3), 360–365. https://doi.org/10.1248/cpb.56.360
  • Tayyab, S., & Feroz, S. R. (2021). Serum albumin: Clinical significance of drug binding and development as drug delivery vehicle. Advances in Protein Chemistry and Structural Biology, 123, 193–218.
  • Tuominen, M., Karp, H. J., & Itkonen, S. T. (2022) Phosphorus-Containing Food Additives in the Food Supply—An Audit of Products on Supermarket Shelves. Journal of Renal Nutrition, 32, 30–38. https://doi.org/10.1053/j.jrn.2021.07.010.
  • Wang, H., Wang, H., Tian, Z., Zhang, H., Huang, Y., Qiu, X., Yu, D., & Zhang, L. (2022). Analysis of biomolecular interaction process based on SPR imaging method in microfluidic chips. Plasmonics, 17(2), 621–631. https://doi.org/10.1007/s11468-021-01548-w
  • Wani, T. A., Bakheit, A. H., Abounassif, M. A., & Zargar, S. (2018). Study of interactions of an anticancer drug neratinib with bovine serum albumin: Spectroscopic and molecular docking approach [Original Research]. Frontiers in Chemistry, 6, 47. https://doi.org/10.3389/fchem.2018.00047
  • Wani, T. A., Bakheit, A. H., Zargar, S., Alanazi, Z. S., & Al-Majed, A. A. (2021). Influence of antioxidant flavonoids quercetin and rutin on the in-vitro binding of neratinib to human serum albumin. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 246, 118977.
  • Younes, M., Aquilina, G., Castle, L., Engel, K.-H., Fowler, P., Frutos Fernandez, M. J., Fürst, P., Gürtler, R., Husøy, T., Mennes, W., Moldeus, P., Oskarsson, A., Shah, R., Waalkens-Berendsen, I., Wölfle, D., Aggett, P., Cupisti, A., Fortes, C., Kuhnle, G., … Gundert-Remy, U. (2019). Re‐evaluation of phosphoric acid–phosphates–di‐, tri‐and polyphosphates (E 338–341, E 343, E 450–452) as food additives and the safety of proposed extension of use. EFSA Journal, 17(6), e05674. https://doi.org/10.2903/j.efsa.2019.5674
  • Zhang, C., Zhang, J., Rao, H., Yang, J., Wang, X., & Peng, X. (2020). Investigation on the interaction of Brazilin with bovine serum albumin using multi-spectroscopic and computational methods: Exploring the binding mechanism and inhibitory effect on amyloid aggregation. Microchemical Journal, 159, 105529. https://doi.org/10.1016/j.microc.2020.105529
  • Zhou, H., Shi, X., Fan, Y., He, Z., Gu, W., Ye, L., & Meng, F. (2018). Interaction of Prussian blue nanoparticles with bovine serum albumin: A multi-spectroscopic approach. Journal of Biomolecular Structure & Dynamics, 36(1), 254–261. https://doi.org/10.1080/07391102.2016.1274273

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.