3,936
Views
4
CrossRef citations to date
0
Altmetric
Review

Lithium Extraction Techniques and the Application Potential of Different Sorbents for Lithium Recovery from Brines

, , , &
Pages 261-280 | Published online: 08 Mar 2022
 

ABSTRACT

Geothermal power plants produce large amounts of high-temperature fluids from variable depths. These fluids can be enriched in lithium to up to 240 mg/L, rendering them an exploitable resource, not yet processed at industrial scale. The pressure on Li demand is expected to increase in the future, making the technical degradability of new Li resources indispensable. We examine Li-extraction methods from aqueous solutions systematically, dealing with evaporation, direct precipitation, membrane-related processes, solvent extraction, sorption, and ion exchange. Sorption and ion-exchange techniques are regarded to be the most promising methods with a high potential for the feasible lithium extraction. Therefore, Li sorption on different inorganic sorbents, in particular for the implementation into operating geothermal power plants, is evaluated. Inorganic sorbents, such as lithium–manganese oxide, titanium oxide, aluminum hydroxide, iron phosphate, clay minerals, and zeolite group minerals besides other sorbents, e.g. zirconium phosphate, tin antimonate, antimony oxide, tantalum oxide, and niobium oxide, are regarded. Promising inorganic sorbents for an environmentally friendly, efficient, and selective Li extraction are lithium–manganese oxide, iron phosphate, or zeolite. To evaluate the effectiveness of these sorbents to large-scale industrial Li2CO3 (or LiOH) production, we highlight their potential advantages and disadvantages in the application under geothermal operating conditions.

Acknowledgments

Michèle Jungmann is acknowledged for many helpful discussions concerning lithium in hydrothermal systems. We especially thank Editor-in-Chief Dr. Kawatra as well as four anonymous reviewers for their comments and revisions that significantly improved the quality of this article. This research is part of the project “UnLimited” which is funded by the German Federal Ministry for Economic Affairs and Energy under Grant O3EE4023D.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the German Federal Ministry for Economic Affairs and Energy [O3EE4023D].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,048.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.