3,936
Views
4
CrossRef citations to date
0
Altmetric
Review

Lithium Extraction Techniques and the Application Potential of Different Sorbents for Lithium Recovery from Brines

, , , &

References

  • Abe, M., and N. Furuki. 1986. Synthetic inorganic ion-exchange materials. XXXXI. Ion exchange equilibria of alkali metal ions/hydrogen ions on tin (IV) antimonate. Solvent Extraction and Ion Exchange 4:547–65.
  • Abe, M., and M. Tsuji. 1983. Synthesis of quadrivalent metal antimonates as ion exchangers and their selectivities for alkali metal ions. Chemistry Letters 12:1561–64.
  • Accardi, R. J., and R. F. Lobo. 2000. Accessibility of lithium cations in high-silica zeolites investigated using the NMR paramagnetic shift effect of adsorbed oxygen. Microporous and Mesoporous Materials 40:25–34.
  • Akgül, M., A. Karabakan, O. Acar, and Y. Yürüm. 2006. Removal of silver (I) from aqueous solutions with clinoptilolite. Microporous and Mesoporous Materials 94:99–104.
  • Ambrose, H., and A. Kendall. 2020a. Understanding the future of lithium: Part 1, resource model. Journal of Industrial Ecology 24:80–89.
  • Ambrose, H., and A. Kendall. 2020b. Understanding the future of lithium: Part 2, temporally and spatially resolved life‐cycle assessment modeling. Journal of Industrial Ecology 24:90–100.
  • Amer, A. M. 2008. The hydrometallurgical extraction of lithium from Egyptian montmorillonite-type clay. JOM 60:55–57.
  • An, J. W., D. J. Kang, K. T. Tran, M. J. Kim, T. Lim, and T. Tran. 2012. Recovery of lithium from Uyuni salar brine. Hydrometallurgy 117:64–70.
  • Aquilina, L., H. Pauwels, A. Genter, and C. Fouillac. 1997. Water-rock interaction processes in the Triassic sandstone and the granitic basement of the Rhine Graben: Geochemical investigation of a geothermal reservoir. Geochimica et cosmochimica acta 61:4281–95.
  • Aral, H., and Vecchio-Sadus, A. 2008. Toxicity of lithium to humans and the environment - a literature review. Ecotoxicology and Environmental Safety 70:349–356.
  • ArcGIS. 2020. Hellgraue Hintergrundkarte. arcgis.com.
  • Ariza, M. J., D. J. Jones, J. Rozière, R. Chitrakar, and K. Ooi. 2006. Probing the local structure and the role of protons in lithium sorption processes of a new lithium-rich manganese oxide. Chemistry of Materials 18:1885–90.
  • Arnold, G., J. Garche, R. Hemmer, S. Ströbele, C. Vogler, and M. Wohlfahrt-Mehrens. 2003. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique. Journal of Power Sources 119:247–51.
  • Asadi Dalini, E., G. Karimi, S. Zandevakili, and M. Goodarzi. 2021. A review on environmental, economic and hydrometallurgical processes of recycling spent lithium-ion batteries. Mineral Processing and Extractive Metallurgy Review 42:451–72.
  • Athanasiadis, K., and B. Helmreich. 2005. Influence of chemical conditioning on the ion exchange capacity and on kinetic of zinc uptake by clinoptilolite. Water Research 39:1527–32.
  • Bajestani, M. B., A. Moheb, and M. Masigol. 2019. Simultaneous optimization of adsorption capacity and stability of hydrothermally synthesized spinel ion sieve composite adsorbents for selective removal of lithium from aqueous solutions. Industrial & Engineering Chemistry Research 58:12207–15.
  • Banks, M. K. 1953. A Method For Concentration oi North Carolina Spodumene Ores.
  • Banks, D., Markland, H., Smith, P. V., Mendez, C., Rodriguez, J., Huerta, A., and Sæther, O. M. 2004. Distribution, salinity and pH dependence of elements in surface waters of the catchment areas of the Salars of Coipasa and Uyuni, Bolivian Altiplano. Journal of Geochemical Exploration 84:141–166.
  • Barrer, R. M., J. A. Davies, and L. V. C. Rees. 1969. Comparison of the ion exchange properties of zeolites X and Y. Journal of Inorganic and Nuclear Chemistry 31:2599–609.
  • Barrow, N. J. 2008. The description of sorption curves. European Journal of Soil Science 59:900–10.
  • Belova, T. P. 2010. The analysis of sorption extraction of boron and lithium from the geothermal heat-carriers. Proceedings of the World Geothermal Congress, Bali, Indonesia.
  • Belova, T. P. 2017. Experimental studies in the sorptive extraction of boron and lithium from thermal waters. Journal of Volcanology and Seismology 11:136–42.
  • Belova, T. P. 2019. Adsorption of heavy metal ions (Cu2+, Ni2+, Co2+ and Fe2+) from aqueous solutions by natural zeolite. Heliyon 5:e02320.
  • Benson, T. R., M. A. Coble, J. J. Rytuba, and G. A. Mahood. 2017. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nature Communications 8:1–9.
  • Beyaz Kayiran, S., and F. Lamari Darkrim. 2002. Synthesis and ionic exchanges of zeolites for gas adsorption. Surface and Interface Analysis: An International Journal Devoted to the Development and Application of Techniques for the Analysis of Surfaces, Interfaces and Thin Films 34:100–04.
  • Blackford, J. C., and F. J. Gilbert. 2007. pH variability and CO2 induced acidification in the North Sea. Journal of Marine Systems 64:229–41.
  • Blanc, P., A. Lassin, P. Piantone, M. Azaroual, N. Jacquemet, A. Fabbri, and E. C. Gaucher. 2012. Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials. Applied Geochemistry 27:2107–16.
  • Bohn, H. L., R. A. Myer, and G. A. O’Connor. 2002. Soil chemistry. New York, USA: John Wiley & Sons.
  • Border, S., and L. Sawyer. 2014. Evaporites and brines–geological, hydrological and chemical aspects of resource estimation. Applied Earth Science 123:95–106.
  • Borrmann, T., M. Schweig, and J. H. Johnston. 2019. Transforming silica into silicate–pilot scale removal of problematic silica from geothermal brine. Chem NZ 83:63–70 .
  • Bouguerra, W., M. B. S. Ali, B. Hamrouni, and M. Dhahbi. 2007. Equilibrium and kinetic studies of adsorption of silica onto activated alumina. Desalination 206:141–46.
  • Bowell, R. J., L. Lagos, C. R. de Los Hoyos, and J. Declercq. 2020. Classification and characteristics of natural lithium resources. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology 16:259–64.
  • Bruggenwert, M. G. M., and A. Kamphorst. 1979. Survey of experimental information on cation exchange in soil systems. In Developments in Soil Science 5 G.H. Bolt , 141–203. Amsterdam: Elsevier.
  • Bukowsky, H., and E. Uhlemann. 1993. Selective extraction of lithium chloride from brines. Separation Science and Technology 28:1357–60.
  • Bundesanstalt für Geowissenschaften und Rohstoffe. 2020. Lithium: Rohstoffwirtschaftliche Steckbriefe. 6.
  • Butterman, W. C.1988. Current status of the specialty metals. Mineral Processing and Extractive Metallurgy Review 3:69–86.
  • Cao, G., X. Yang, Z. Yin, Y. Lei, H. Wang, and J. Li. 2019. Synthesis, adsorption properties and stability of Cr-doped lithium ion sieve in salt lake brine. Bulletin of the Chemical Society of Japan 92:1205–10.
  • Carland, R. M., and F. F. Aplan. 1995. Improving the ion-exchange capacity and elution of Cu+ 2 from natural sedimentary zeolites. Mining, Metallurgy & Exploration 12:210–18.
  • Chaban, M. O., L. M. Rozhdestvenska, O. V. Palchyk, Y. S. Dzyazko, and O. G. Dzyazko. 2019. Structural characteristics and sorption properties of lithium-selective composite materials based on TiO 2 and MnO 2. Applied Nanoscience 9:1037–45.
  • Chang, F.-R. C., N. T. Skipper, and G. Sposito. 1997. Monte Carlo and molecular dynamics simulations of interfacial structure in lithium-montmorillonite hydrates. Langmuir 13:2074–82.
  • Chitrakar, R., and M. Abe. 1988. Synthetic inorganic ion exchange materials XLVII. Preparation of a new crystalline antimonic acid HSbO3. O. 12H2O. Materials Research Bulletin 23:1231–40.
  • Chitrakar, R., and M. Abe. 1989. Synthetic inorganic ion-exchange materials. XLVIII. ion-exchange reaction of alkali metal Ions/H+ on monoclinic antimonic acid. Solvent Extraction and Ion Exchange 7:721–33.
  • Chitrakar, R., H. Kanoh, Y. Miyai, and K. Ooi. 2000. A new type of manganese oxide (MnO2⊙ 0.5 H2O) derived from Li1. 6Mn1. 6O4 and its lithium ion-sieve properties. Chemistry of Materials 12:3151–57.
  • Chitrakar, R., Y. Makita, K. Ooi, and A. Sonoda. 2013. Magnesium-doped manganese oxide with lithium ion-sieve property: Lithium adsorption from salt lake brine. Bulletin of the Chemical Society of Japan 86:850–55.
  • Chitrakar, R., Y. Makita, K. Ooi, and A. Sonoda. 2014. Synthesis of iron-doped manganese oxides with an ion-sieve property: Lithium adsorption from Bolivian brine. Industrial & Engineering Chemistry Research 53:3682–88.
  • Choubey, P. K., K.-S. Chung, M.-S. Kim, J.-C. Lee, and R. R. Srivastava. 2017. Advance review on the exploitation of the prominent energy-storage element Lithium. Part II: From sea water and spent lithium ion batteries (LIBs). Minerals Engineering 110:104–21.
  • Choubey, P. K., M.-S. Kim, R. R. Srivastava, J.-C. Lee, and J.-Y. Lee. 2016. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources. Minerals Engineering 89:119–37.
  • Cisternas, L. A., J. I. Ordóñez, R. I. Jeldres, and R. Serna-Guerrero. 2021. Toward the implementation of circular economy strategies: An overview of the current situation in mineral processing. Mineral Processing and Extractive Metallurgy Review 1–23.
  • Clearfield, A., and J. Troup. 1970. Mechanism of ion exchange in crystalline zirconium phosphate. II. Lithium ion exchange of. alpha.-zirconium phosphate. The Journal of Physical Chemistry 74:314–17.
  • Clearfield, A., and D. A. Tuhtar. 1976. The mechanism of ion exchange in zirconium phosphates. 15. The effect of crystallinity of the exchange on lithium (1+)/hydrogen (1+) exchange of. alpha.-zirconium phosphate. The Journal of Physical Chemistry 80:1296–301.
  • Cole, K. E., Y. Paik, R. J. Reeder, M. Schoonen, and C. P. Grey. 2004. 2H MAS NMR studies of deuterated goethite (α-FeOOD). The Journal of Physical Chemistry. B 108:6938–40.
  • Colella, C. 1996. Ion exchange equilibria in zeolite minerals. Mineralium Deposita 31:554–62.
  • Collins, A. G. E. N. E., and J. D. Vine. 1976. Lithium abundance in oilfield waters. Lithium Resources and Requirements by the Year 2000 1005:116–23.
  • Condie, K. C. 1993. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology 104:1–37.
  • Corma, A. 2003. State of the art and future challenges of zeolites as catalysts. Journal of Catalysis 216:298–312.
  • Danisi, R. M., and F. R. Schilling. 2021. Dehydration and lithium ion-exchange of the open framework vanadium silicate VSH-16Na. Microporous and Mesoporous Materials 319:111064.
  • Dodbiba, G., P. Keeratithakul, Y. Kanemitsu, and T. Fujita. 2014. Optimization of lithium electrosorption from brine deposit. Geosystem Engineering 17:157–62.
  • Dodd, J. L., B. Fultz, and R. Yazami. 2006. Determining the phase diagram of LixFePO4. ECS Transactions 1:27.
  • Eckstein, Y., D. H. Yaalon, and S. Yariv. 1970. The effect of lithium on the cation exchange behaviour of crystalline and amorphous clays. Israel Journal of Chemistry 8:335–42.
  • Epstein, J. A., E. M. Feist, J. Zmora, and Y. Marcus. 1981. Extraction of lithium from the dead sea. Hydrometallurgy 6:269–75.
  • Erdem, E., N. Karapinar, and R. Donat. 2004. The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science 280:309–14.
  • Evans, R. K. 2008. An abundance of lithium. Santiago: World Lithium.
  • Fasel, D., and M. Q. Tran. 2005. Availability of lithium in the context of future D–T fusion reactors. Fusion Engineering and Design 75:1163–68.
  • Feng, Q., H. Kanoh, Y. Miyai, and K. Ooi. 1995a. Alkali metal ions insertion/extraction reactions with hollandite-type manganese oxide in the aqueous phase. Chemistry of Materials 7:148–53.
  • Feng, Q., H. Kanoh, Y. Miyai, and K. Ooi. 1995b. Hydrothermal synthesis of lithium and sodium manganese oxides and their metal ion extraction/insertion reactions. Chemistry of Materials 7:1226–32.
  • Feng, Q., Y. Miyai, H. Kanoh, and K. Ooi. 1992. Lithium (1+) extraction/insertion with spinel-type lithium manganese oxides. Characterization of redox-type and ion-exchange-type sites. Langmuir 8:1861–67.
  • Ferreira, C. A. M., J. A. C. Ponciano, D. S. Vaitsman, and D. V. Pérez. 2007. Evaluation of the corrosivity of the soil through its chemical composition. Science of the Total Environment 388:250–55.
  • Flexer, V., C. F. Baspineiro, and C. I. Galli. 2018. Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Science of the Total Environment 639:1188–204.
  • Fukuda, H. 2019. Lithium extraction from brine with ion exchange resin and ferric phosphate. Vancouver: University of British Columbia.
  • Gaikwad, R. W., S. A. Misal, and D. V. Gupta. 2011. Removal of metal from acid mine drainage (AMD) by using natural zeolite of Nizarneshwar Hills of Western India. Arabian Journal of Geosciences 4:85–89.
  • Gao, A., X. Hou, Z. Sun, S. Li, H. Li, and J. Zhang. 2019. Lithium-desorption mechanism in LiMn 2 O 4, Li 1.33 Mn 1.67 O 4, and Li 1.6 Mn 1.6 O 4 according to precisely controlled acid treatment and density functional theory calculations. Journal of Materials Chemistry A 7:20878–90.
  • Garcia, M. G., L. G. Borda, L. V. Godfrey, R. L. L. Steinmetz, and A. Losada-Calderon. 2020. Characterization of lithium cycling in the Salar De Olaroz, Central Andes, using a geochemical and isotopic approach. Chemical Geology 531:119340.
  • Gaskova, O. L., and M. B. Bukaty. 2008. Sorption of different cations onto clay minerals: Modelling approach with ion exchange and surface complexation. Physics and Chemistry of the Earth, Parts A/B/C 33:1050–55.
  • Gast, R. G., and W. D. Klobe. 1971. Sodium-lithium exchange equilibria on vermiculite at 25 and 50 C. Clays and Clay Minerals 19:311–19.
  • Gentili, V., S. Brutti, L. J. Hardwick, A. R. Armstrong, S. Panero, and P. G. Bruce. 2012. Lithium insertion into anatase nanotubes. Chemistry of Materials 24:4468–76.
  • Goldberg, V., D. Winter, F. Nitschke, M. Rath, S. Held, L. Spitzmüller, I. Budach, M. Pavez, D. Morata, and J. Koschikowski. 2021. The potential of raw material extraction from thermal brines–successful milestones of the BrineMine project. Oil Gas-European Magazine 47:26–33 .
  • Gorham, E. 1956. The chemical composition of some western Irish fresh waters. Proceedings of the Royal Irish Academy. Section B: Biological, Geological and Chemical Science 58:237–243.
  • Gourcerol, B., E. Gloaguen, J. Melleton, J. Tuduri, and X. Galiegue. 2019. Re-assessing the European lithium resource potential–A review of hard-rock resources and metallogeny. Ore Geology Reviews 109:494–519.
  • Greene-Kelly, R. 1955. Lithium absorption by kaolin minerals. The Journal of Physical Chemistry 59:1151–52.
  • Gruber, P. W., P. A. Medina, G. A. Keoleian, S. E. Kesler, M. P. Everson, and T. J. Wallington. 2011. Global lithium availability: A constraint for electric vehicles? Journal of Industrial Ecology 15:760–75.
  • Gu, D., W. Sun, G. Han, Q. Cui, and H. Wang. 2018. Lithium ion sieve synthesized via an improved solid state method and adsorption performance for West Taijinar Salt Lake brine. Chemical Engineering Journal 350:474–83.
  • Guneysu, S. 2020. Lithium sorption from aqueous solution with cationic resins. Desalination and Water Treatment 177:102–08.
  • Haas-Nüesch, R., F. Heberling, D. Schild, J. Rothe, K. Dardenne, S. Jähnichen, E. Eiche, C. Marquardt, V. Metz, and T. Schäfer. 2018. Mineralogical characterization of scalings formed in geothermal sites in the Upper Rhine Graben before and after the application of sulfate inhibitors. Geothermics 71:264–73.
  • Haklıdır, F. S. T., and T. Ö. Balaban. 2019. A review of mineral precipitation and effective scale inhibition methods at geothermal power plants in West Anatolia (Turkey). Geothermics 80:103–18.
  • Han, Y., H. Kim, and J. Park. 2012. Millimeter-sized spherical ion-sieve foams with hierarchical pore structure for recovery of lithium from seawater. Chemical Engineering Journal 210:482–89.
  • Harvianto, G. R., S.-H. Kim, and C.-S. Ju. 2016. Solvent extraction and stripping of lithium ion from aqueous solution and its application to seawater. Rare Metals 35:948–53.
  • Hawash, S., E. Abd El Kader, and G. El Diwani. 2010. Methodology for selective adsorption of lithium ions onto polymeric aluminium (III) hydroxide. Journal of American Science 6:301–09.
  • Heidari, N., and P. Momeni. 2017. Selective adsorption of lithium ions from Urmia Lake onto aluminum hydroxide. Environmental Earth Sciences 76:1–8.
  • Heidary, F., A. R. Khodabakhshi, and A. N. Kharat. 2016. Novel ion-exchange nanocomposite membrane containing in-situ formed FeOOH nanoparticles: Synthesis, characterization and transport properties. Korean Journal of Chemical Engineering 33:1380–90.
  • Helfferich, F. G. 1995. Ion exchange. New York, USA: Dover Publications, Inc.
  • Helmke, P. A., and D. L. Sparks. 1996. Lithium, sodium, potassium, rubidium, and cesium. Methods of Soil Analysis: Part 3 Chemical Methods 5:551–74.
  • Hong, H.-J., T. Ryu, I.-S. Park, M. Kim, J. Shin, B.-G. Kim, and K.-S. Chung. 2018. Highly porous and surface-expanded spinel hydrogen manganese oxide (HMO)/Al2O3 composite for effective lithium (Li) recovery from seawater. Chemical Engineering Journal 337:455–61.
  • Hoshino, T. 2013. Preliminary studies of lithium recovery technology from seawater by electrodialysis using ionic liquid membrane. Desalination 317:11–16.
  • Houston, J. 2010. Technical report on the Cauchari Project, Jujuy Province, Argentina. ed. Orocobre Ltd. Queensland: FloSolutions.
  • Hoyer, M., N.-A. Kummer, and B. Merkel. 2015. Sorption of lithium on bentonite, kaolin and zeolite. Geosciences 5:127–40.
  • Hunter, J. C. 1981. Preparation of a new crystal form of manganese dioxide: λ-MnO2. Journal of Solid State Chemistry 39:142–47.
  • Inglezakis, V. J., A. A. Zorpas, M. D. Loizidou, and H. P. Grigoropoulou. 2005. The effect of competitive cations and anions on ion exchange of heavy metals. Separation and Purification Technology 46:202–07.
  • Inoue, Y., and M. Abe. 1996. Synthetic inorganic ion exchange materials. XLIII. Ion exchange mechanism of lithium ions on cubic tantalic acid. Solvent Extraction and Ion Exchange 14:507–18.
  • Intaranont, N., N. Garcia-Araez, A. L. Hector, J. A. Milton, and J. R. Owen. 2014. Selective lithium extraction from brines by chemical reaction with battery materials. Journal of Materials Chemistry A 2:6374–77.
  • Ji, Z.-Y., F.-J. Yang, -Y.-Y. Zhao, J. Liu, N. Wang, and J.-S. Yuan. 2017. Preparation of titanium-base lithium ionic sieve with sodium persulfate as eluent and its performance. Chemical Engineering Journal 328:768–75.
  • Jiang, H., Y. Yang, S. Sun, and J. Yu. 2020a. Adsorption of lithium ions on lithium‐aluminum hydroxides: Equilibrium and kinetics. The Canadian Journal of Chemical Engineering 98:544–55.
  • Jiang, H., Y. Yang, and J. Yu. 2020b. Application of concentration-dependent HSDM to the lithium adsorption from brine in fixed bed columns. Separation and Purification Technology 241:116682.
  • Joshi, D. R., and N. Adhikari. 2019. An overview on common organic solvents and their toxicity. Journal of Pharmaceutical Research International 28:1–18.
  • Kamran, U., and S.-J. Park. 2020. Functionalized titanate nanotubes for efficient lithium adsorption and recovery from aqueous media. Journal of Solid State Chemistry 283:121157.
  • Kaunda, R. B. 2020. Potential environmental impacts of lithium mining. Journal of Energy & Natural Resources Law 38:237–44.
  • Kawamoto, H., and W. Tamaki. 2011. Trends in supply of lithium resources and demand of the resources for automobiles.Tokyo, Japan: NISTEP Science & Technology Foresight Center.
  • Kaya, E., S. J. Zarrouk, and M. J. O’Sullivan. 2011. Reinjection in geothermal fields: A review of worldwide experience. Renewable and Sustainable Energy Reviews 15:47–68.
  • Kelly, J. C., M. Wang, Q. Dai, and O. Winjobi. 2021. Energy, greenhouse gas, and water life cycle analysis of lithium carbonate and lithium hydroxide monohydrate from brine and ore resources and their use in lithium ion battery cathodes and lithium ion batteries. Resources, Conservation and Recycling 174:105762.
  • Kesler, S. E., P. W. Gruber, P. A. Medina, G. A. Keoleian, M. P. Everson, and T. J. Wallington. 2012. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geology Reviews 48:55–69.
  • Kim, J., and C. P. Grey. 2010. 2H and 7Li solid-state MAS NMR study of local environments and lithium adsorption on the iron (III) oxyhydroxide, akaganeite (β-FeOOH). Chemistry of Materials 22:5453–62.
  • Kim, J., U. G. Nielsen, and C. P. Grey. 2008. Local environments and lithium adsorption on the iron oxyhydroxides lepidocrocite (γ-FeOOH) and goethite (α-FeOOH): A 2H and 7Li solid-state MAS NMR study. Journal of the American Chemical Society 130:1285–95.
  • Kloprogge, J. T., S. Komarneni, and J. E. Amonette. 1999. Synthesis of smectite clay minerals: A critical review. Clays and Clay Minerals 47:529–54.
  • Kudryavtsev, P. G. 2016. Lithium in nature, application, methods of extraction. Journal” Scientific Israel-Technological Advantages 18:63–83.
  • Kuss, C., M. Carmant-Dérival, N. D. Trinh, G. Liang, and S. B. Schougaard. 2014. Kinetics of heterosite iron phosphate lithiation by chemical reduction. The Journal of Physical Chemistry C 118:19524–28.
  • Lagaly, G., and S. Ziesmer. 2003. Colloid chemistry of clay minerals: The coagulation of montmorillonite dispersions. Advances in Colloid and Interface Science 100:105–28.
  • Lawagon, C. P., G. M. Nisola, J. Mun, A. Tron, R. E. C. Torrejos, J. G. Seo, H. Kim, and W.-J. Chung. 2016. Adsorptive Li+ mining from liquid resources by H2TiO3: Equilibrium, kinetics, thermodynamics, and mechanisms. Journal of Industrial and Engineering Chemistry 35:347–56.
  • Lee, D. A., W. L. Taylor, W. J. McDowell, and J. S. Drury. 1968. Solvent extraction of lithium. Journal of Inorganic and Nuclear Chemistry 30:2807–21.
  • Lemaire, J., L. Svecova, F. Lagallarde, R. Laucournet, and P.-X. Thivel. 2014. Lithium recovery from aqueous solution by sorption/desorption. Hydrometallurgy 143:1–11.
  • Li, N. N., R. P. Cahn, D. Naden, and R. W. M. Lai. 1983. Liquid membrane processes for copper extraction. Hydrometallurgy 9:277–305.
  • Li, X., Y. Chao, L. Chen, W. Chen, J. Luo, C. Wang, P. Wu, H. Li, and W. Zhu. 2020. Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources. Chemical Engineering Journal 392:123731.
  • Li, Z., C. Li, X. Liu, L. Cao, P. Li, R. Wei, X. Li, D. Guo, K.-W. Huang, and Z. Lai. 2021. Continuous electrical pumping membrane process for seawater lithium mining. Energy & Environmental Science 14:3152–59.
  • Li, W., and X.-M. Liu. 2020. Experimental investigation of lithium isotope fractionation during kaolinite adsorption: Implications for chemical weathering. Geochimica et cosmochimica acta 284:156–72.
  • Li, L., W. Qu, F. Liu, T. Zhao, X. Zhang, R. Chen, and F. Wu. 2014. Surface modification of spinel λ-MnO2 and its lithium adsorption properties from spent lithium ion batteries. Applied Surface Science 315:59–65.
  • Limousin, G., J.-P. Gaudet, L. Charlet, S. Szenknect, V. Barthes, and M. Krimissa. 2007. Sorption isotherms: A review on physical bases, modeling and measurement. Applied Geochemistry 22:249–75.
  • Liu, W., D. B. Agusdinata, and S. W. Myint. 2019d. Spatiotemporal patterns of lithium mining and environmental degradation in the Atacama Salt Flat, Chile. International Journal of Applied Earth Observation and Geoinformation 80:145–56.
  • Liu, X., X. Chen, Z. Zhao, and X. Liang. 2014. Effect of Na+ on Li extraction from brine using LiFePO4/FePO4 electrodes. Hydrometallurgy 146:24–28.
  • Liu, D.-F., S.-Y. Sun, and J.-G. Yu. 2019a. A new high-efficiency process for Li+ recovery from solutions based on LiMn2O4/λ-MnO2 materials. Chemical Engineering Journal 377:119825.
  • Liu, K., Q. Tan, L. Liu, and J. Li. 2019c. Acid-free and selective extraction of lithium from spent lithium iron phosphate batteries via a mechanochemically induced isomorphic substitution. Environmental Science & Technology 53:9781–88.
  • Liu, W., H. Xu, X. Shi, and X. Yang. 2017. Fractional crystallization for extracting lithium from Cha’erhan tail brine. Hydrometallurgy 167:124–28.
  • Liu, L., H. Zhang, Y. Zhang, D. Cao, and X. Zhao. 2015. Lithium extraction from seawater by manganese oxide ion sieve MnO2· 0.5 H2O. Colloids and Surfaces. A, Physicochemical and Engineering Aspects 468:280–84.
  • Liu, G., Z. Zhao, and A. Ghahreman. 2019b. Novel approaches for lithium extraction from salt-lake brines: A review. Hydrometallurgy 187:81–100.
  • Liu, G., Z. Zhao, and L. He. 2020. Highly selective lithium recovery from high Mg/Li ratio brines. Desalination 474:114185.
  • Marazuela, M. A., E. Vázquez-Suñé, C. Ayora, and A. García-Gil. 2020. Towards more sustainable brine extraction in salt flats: Learning from the Salar de Atacama. Science of the Total Environment 703:135605.
  • Marion, G. M., F. J. Millero, M. F. Camões, P. Spitzer, R. Feistel, and C.-T. A. Chen. 2011. pH of seawater. Marine Chemistry 126:89–96.
  • Marthi, R., H. Asgar, G. Gadikota, and Y. R. Smith. 2021. On the structure and lithium adsorption mechanism of layered H2TiO3. ACS Applied Materials & Interfaces 13:8361–69.
  • McCauley, A., C. Jones, and J. Jacobsen. 2009. Soil pH and organic matter. Nutrient Management Module 8:1–12.
  • Melnikov, S., N. Sheldeshov, V. Zabolotsky, S. Loza, and A. Achoh. 2017. Pilot scale complex electrodialysis technology for processing a solution of lithium chloride containing organic solvents. Separation and Purification Technology 189:74–81.
  • Meng, F., J. McNeice, S. S. Zadeh, and A. Ghahreman. 2021. Review of lithium production and recovery from minerals, brines, and lithium-ion batteries. Mineral Processing and Extractive Metallurgy Review 42:123–41.
  • Meroufel, B., O. Benali, M. Benyahia, M. Zenasni, A. Merlin, and B. George. 2013. Removal of Zn (II) from aqueous solution onto kaolin by batch design. Journal of Water Resource and Protection 5:669–80.
  • Meshram, P., and B. D. Pandey. 2018. Advanced review on extraction of nickel from primary and secondary sources. Mineral Processing and Extractive Metallurgy Review 40:157–193.
  • Millennial Lithium Corp. 2020. Millennial Lithium Corp. Announces commissioning of lithium carbonate pilot plant at its pastos grandes project in Salta, Argentina.West Vancouver, BC: Millennial Lithium.
  • Mimura, K., K. Nakamura, K. Yasukawa, S. Machida, J. Ohta, K. Fujinaga, and Y. Kato. 2019. Significant impacts of pelagic clay on average chemical composition of subducting sediments: New insights from discovery of extremely rare-earth elements and yttrium-rich mud at Ocean Drilling Program Site 1149 in the western North Pacific Ocean. Journal of Asian Earth Sciences 186:104059.
  • The Mineral Corporation. 2019. Mineral Resource estimates for the Falchani Lithium Project in the Puno District of Peru. 76.
  • Mining Data Online. 2021. Sal de vida project. https://miningdataonline.com/property/3228/Sal-de-Vida-Project.aspx
  • Miyai, Y., K. Ooi, and S. Katoh. 1988. Recovery of lithium from seawater using a new type of ion-sieve adsorbent based on MgMn2O4. Separation Science and Technology 23:179–91.
  • Moazeni, M., H. Hajipour, M. Askari, and M. Nusheh. 2015. Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents. Materials Research Bulletin 61:70–75.
  • Moazzam, P., Y. Boroumand, P. Rabiei, S. S. Baghbaderani, P. Mokarian, F. Mohagheghian, L. J. Mohammed, and A. Razmjou. 2021. Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries. Chemosphere 277:1–20.
  • Mohr, S. H., G. M. Mudd, and D. Giurco. 2012. Lithium resources and production: Critical assessment and global projections. Minerals 2:65–84.
  • Moran, S. 2018. Clean water characterization and treatment objectives. An applied guide to water effluent treatment plant design. United States of American. Elsevier BV Inc., 978-0-12-811309-7 Chap 6, 61–67.
  • Morcos, S. A. 1970. Chemical composition of seawater and the variation of calcium and alkalinity. ICES Journal of Marine Science 33:126–33.
  • Nan, J., D. Han, and X. Zuo. 2005. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction. Journal of Power Sources 152:278–84.
  • Navarrete-Casas, R., A. Navarrete-Guijosa, C. Valenzuela-Calahorro, J. D. López-González, and A. García-Rodríguez. 2007. Study of lithium ion exchange by two synthetic zeolites: Kinetics and equilibrium. Journal of Colloid and Interface Science 306:345–53.
  • Nie, X.-Y., S.-Y. Sun, X. Song, and J.-G. Yu. 2017. Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis. Journal of Membrane Science 530:185–91.
  • Nielsen, U. G., Y. Paik, K. Julmis, M. A. A. Schoonen, R. J. Reeder, and C. P. Grey. 2005. Investigating sorption on iron− oxyhydroxide soil minerals by solid-state NMR spectroscopy: A 6Li MAS NMR Study of Adsorption and Absorption on Goethite. The Journal of Physical Chemistry. B 109:18310–15.
  • Nir, S., D. Hirsch, J. Navrot, and A. Banin. 1986. Specific adsorption of lithium, sodium, potassium, and strontium to montmorillonite: Observations and predictions. Soil Science Society of America Journal 50:40–45.
  • Obaid, S. S., D. K. Gaikwad, M. I. Sayyed, A. L.-R. Khader, and P. P. Pawar. 2018. Heavy metal ions removal from waste water by the natural zeolites. Materials Today: Proceedings 5:17930–34.
  • Odom, I. E. 1984. Smectite clay minerals: Properties and uses. Philosophical Transactions of the Royal Society of London. Series A: Mathematical and Physical Sciences 311:391–409.
  • Ogawa, Y., H. Koibuchi, K. Suto, and C. Inoue. 2014. Effects of the chemical compositions of S alars de U yuni and A tacama Brines on lithium concentration during evaporation. Resource Geology 64:91–101.
  • Ohashi, F., and Y. Tai. 2019. Lithium adsorption from natural brine using surface-modified manganese oxide adsorbents. Materials Letters 251:214–17.
  • Oi, T., M. Endoh, M. Narimoto, and M. Hosoe. 2000. Ion and lithium isotope selectivity of monoclinic antimonic acid. Journal of Materials Science 35:509–13.
  • Olson, C. L., J. Nelson, and M. S. Islam. 2006. Defect chemistry, surface structures, and lithium insertion in anatase TiO2. The Journal of Physical Chemistry. B 110:9995–10001.
  • Ooi, K., Y. Makita, A. Sonoda, R. Chitrakar, Y. Tasaki-Handa, and T. Nakazato. 2016. Modelling of column lithium adsorption from pH-buffered brine using surface Li+/H+ ion exchange reaction. Chemical Engineering Journal 288:137–45.
  • Ooi, K., Y. Miyai, and S. Katoh. 1987. Lithium-ion sieve property of λ;-type manganese oxide. Solvent Extraction and Ion Exchange 5:561–72.
  • Ooi, K., Y. Miyai, S. Katoh, H. Maeda, and M. Abe. 1989. Topotactic lithium (1+) insertion to. lambda.-manganese dioxide in the aqueous phase. Langmuir 5:150–57.
  • Ooi, K., Y. Miyai, and J. Sakakihara. 1991. Mechanism of lithium (1+) insertion in spinel-type manganese oxide. Redox and ion-exchange reactions. Langmuir 7:1167–71.
  • Palagonia, M. S., D. Brogioli, and F. La Mantia. 2020. Lithium recovery from diluted brine by means of electrochemical ion exchange in a flow-through-electrodes cell. Desalination 475:114192.
  • Palmer, A. N., and M. V. Palmer. 2003. Geochemistry of capillary seepage in Mammoth Cave. Speleogenesis and Evolution of Karst Aquifers 1:1–8.
  • Park, H., N. Singhal, and E. H. Jho. 2015. Lithium sorption properties of HMnO in seawater and wastewater. Water Research 87:320–27.
  • Pauwels, H., M. Brach, and C. Fouillac. 1990. Lithium recovery from geothermal waters of Cesano (Italy) and Cronenbourg (Alsace, France). Geochimica et Cosmochimica Acta 57 :2737–2749.
  • Pauwels, H., M. Brach, and C. Fouillac. 1993. Chemistry and isotopes of deep geothermal saline fluids in the Upper Rhine Graben: Origin of compounds and water-rock interactions. Geochimica et cosmochimica acta 57:2737–49.
  • Peerawattuk, I., and E. R. Bobicki. 2018. Lithium Extraction and Utilization: A Historical Perspective. In Extraction 2018. The Minerals, Metals & Materials Series. Springer, Cham 2209–2224.
  • Pirajno, F. 2012. Hydrothermal mineral deposits: Principles and fundamental concepts for the exploration geologist. Berlin Heidelberg: Springer Science & Business Media.
  • Prodromou, K. P. 2016. Lithium adsorption on amorphous aluminum hydroxides and gibbsite. Eurasian Journal of Soil Science 5:13–16.
  • Pueyo, J. J., G. Chong, and C. Ayora. 2017. Lithium saltworks of the Salar de Atacama: A model for MgSO4-free ancient potash deposits. Chemical Geology 466:173–86.
  • Qian, F., M. Guo, Z. Qian, Q. Li, Z. Wu, and Z. Liu. 2019. Highly lithium adsorption capacities of H1. 6Mn1. 6O4 ion-sieve by ordered array structure. ChemistrySelect 4:10157–63.
  • Qiao, D., G. Wang, T. Gao, B. Wen, and T. Dai. 2021. Potential impact of the end-of-life batteries recycling of electric vehicles on lithium demand in China: 2010–2050. Science of the Total Environment 764:142835.
  • Rao, G. P. C., S. Satyaveni, A. Ramesh, K. Seshaiah, K. S. N. Murthy, and N. V. Choudary. 2006. Sorption of cadmium and zinc from aqueous solutions by zeolite 4A, zeolite 13X and bentonite. Journal of Environmental Management 81:265–72.
  • Reidel, F., and P. Ehren. 2018. Technical report: Lithium and potassium resources. Cauchari Project, Jujuy Province, Argentina.
  • Rio Tinto. 2020. Rio Tinto declares maiden Ore Reserve at Jadar. Melbourne, Australia: Rio Tinto Limited. https://www.riotinto.com/news/releases/2020/Rio-Tinto-declares-maiden-Ore-Reserve-at-Jadar
  • Rydberg, J. 2004. Solvent extraction principles and practice, revised and expanded. New York, USA: CRC press.
  • Ryu, T., J. C. Ryu, J. Shin, D. H. Lee, Y. H. Kim, and K.-S. Chung. 2013. Recovery of lithium by an electrostatic field-assisted desorption process. Industrial & Engineering Chemistry Research 52:13738–42.
  • Ryu, T., J. Shin, D.-H. Lee, J. Ryu, I. Park, H. Hong, Y. S. Huh, B.-G. Kim, and K.-S. Chung. 2015. Development of multi-stage column for lithium recovery from an aqueous solution. Hydrometallurgy 157:39–43.
  • Safari, S., B. G. Lottermoser, and D. S. Alessi. 2020. Metal oxide sorbents for the sustainable recovery of lithium from unconventional resources. Applied Materials Today 19:100638.
  • Sakamoto, H., K. Kimura, and T. Shono. 1987. Lithium separation and enrichment by proton-driven cation transport through liquid membranes of lipophilic crown nitrophenols. Analytical Chemistry 59:1513–17.
  • Salakjani, N. K., P. Singh, and A. N. Nikoloski. 2021. Production of lithium–A literature review. Part 2. Extraction from spodumene. Mineral Processing and Extractive Metallurgy Review 42:268–83.
  • Sanjuan, B., R. Millot, C. Innocent, C. Dezayes, J. Scheiber, and M. Brach. 2016. Major geochemical characteristics of geothermal brines from the Upper Rhine Graben granitic basement with constraints on temperature and circulation. Chemical Geology 428:27–47.
  • Sato, K., D. M. Poojary, A. Clearfield, M. Kohno, and Y. Inoue 1997. The surface structure of the proton-exchanged lithium manganese oxide spinels and their lithium-ion sieve properties. Journal of Solid State Chemistry 131:84–93.
  • Savannah Resources Plc. 2010-2021. Press release: Mina do Barroso Project, Portugal. https://www.savannahresources.com/assets/mina-do-barroso
  • Schmidt, M. 2017. Rohstoffrisikobewertung - Lithium . Berlin: DERA Rohstoffinformationen 33.
  • Shi, C., Y. Jing, J. Xiao, X. Wang, Y. Yao, and Y. Jia 2017. Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents. Separation and Purification Technology 172:473–79.
  • Shi, X.-C., Z.-B. Zhang, D.-F. Zhou, L.-F. Zhang, B.-Z. Chen, and L.-L. Yu. 2013. Synthesis of Li+ adsorbent (H2TiO3) and its adsorption properties. Transactions of Nonferrous Metals Society of China 23:253–59.
  • Slunitschek, K., J. Kolb, and E. Eiche. 2021. Lithium extraction from geothermal brines. GIT Laborfachzeitschrift 7-8: 14–16.
  • Somrani, A. A. H. H., A. H. Hamzaoui, and M. Pontie 2013. Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO). Desalination 317:184–92.
  • Song, J. F., L. D. Nghiem, X.-M. Li, and T. He 2017. Lithium extraction from Chinese salt-lake brines: Opportunities, challenges, and future outlook. Environmental Science: Water Research & Technology 3:593–97.
  • Stober, I., and K. Bucher. 2012. Geothermie. Berlin: Springer.
  • Stringfellow, W. T., and P. F. Dobson 2021. Technology for the Recovery of Lithium from Geothermal Brines. Energies 14:6805.
  • Su, H., Z. Li, J. Zhang, Z. Zhu, L. Wang, and T. Qi. 2020. Recovery of lithium from salt lake brine using a mixed ternary solvent extraction system consisting of TBP, FeCl3 and P507. Hydrometallurgy 197:105487.
  • Sullivan, E. J., P. W. Reimus, S. J. Chipera, and D. Counce 2003. Effects of mineralogy, exchange capacity, surface area and grain size on lithium sorption to zeolitic alluvium near Yucca Mountain, Nevada. Clays and Clay Minerals 51:634–43.
  • Sun, S.-Y., L.-J. Cai, X.-Y. Nie, X. Song, and J.-G. Yu. 2015. Separation of magnesium and lithium from brine using a Desal nanofiltration membrane. Journal of Water Process Engineering 7:210–17.
  • Sun, S., X. Yu, M. Li, J. Duo, Y. Guo, and T. Deng 2020. Green recovery of lithium from geothermal water based on a novel lithium iron phosphate electrochemical technique. Journal of Cleaner Production 247:119178.
  • Sverjensky, D. A., E. L. Shock, and H. C. Helgeson 1997. Prediction of the thermodynamic properties of aqueous metal complexes to 1000 C and 5 kb. Geochimica et cosmochimica acta 61:1359–412.
  • Swain, B. 2016. Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: A review. Journal of Chemical Technology and Biotechnology 91:2549–62.
  • Swain, B. 2017. Recovery and recycling of lithium: A review. Separation and Purification Technology 172:388–403.
  • Sykes, J. 2019. A global overview of the geology and economics of lithium production.
  • Tadesse, B., F. Makuei, B. Albijanic, and L. Dyer 2019. The beneficiation of lithium minerals from hard rock ores: A review. Minerals Engineering 131:170–84.
  • Taghvaei, N., E. Taghvaei, and M. Askari 2020. Synthesis of anodized TiO2 nanotube arrays as ion sieve for lithium extraction. ChemistrySelect 5:10339–45.
  • Takeno, N. 2005. Atlas of Eh-pH diagrams. Geological Survey of Japan Open File Report 419:102.
  • Tian, L., W. Ma, and M. Han 2010. Adsorption behavior of Li+ onto nano-lithium ion sieve from hybrid magnesium/lithium manganese oxide. Chemical Engineering Journal 156:134–40.
  • US Geological Survey. 2021. Mineral commodity summaries 2021: Lithium. (Reston, VA: U.S. Geological Survey)
  • Valdez, S. K., H. R. Flores, and A. Orce. 2016. Influence of the evaporation rate over lithium recovery from brines. World Journal of Research and Review 3:66–70 .
  • Hoek, E.M., Tarabara, V.V. and Van der Bruggen, B. 2013. Nanofiltration. In Encyclopedia of Membrane Science and Technology (eds E.M. Hoek and V.V. Tarabara). https://doi.org/10.1002/9781118522318.emst077)
  • Ventura, S., S. Bhamidi, M. Hornbostel, and A. Nagar, International, SRI. 2020. Selective Recovery of Lithium from Geothermal Brines: Final Project Report.California, USA: California Energy Commission.
  • Ventura, S., S. Bhamidi, M. Hornbostel, A. Nagar, and E. Perea 2016. Selective recovery of metals from geothermal brines. Menlo Park, CA (United States): SRI International.
  • Wang, S., Li, P., Cui, W., Zhang, H., Wang, H., Zheng, S., and Zhang, Y. 2016. Hydrothermal synthesis of lithium-enriched β-Li2TiO3 with an ion-sieve application: excellent lithium adsorption. RSC advances 6:102608–102616.
  • Wang, L., C. G. Meng, M. Han, and W. Ma 2008. Lithium uptake in fixed-pH solution by ion sieves. Journal of Colloid and Interface Science 325:31–40.
  • Wang, S., M. Zhang, Y. Zhang, Y. Zhang, S. Qiao, and S. Zheng 2019. High adsorption performance of the Mo-doped titanium oxide sieve for lithium ions. Hydrometallurgy 187:30–37.
  • Warnock, S. J., R. Sujanani, E. S. Zofchak, S. Zhao, T. J. Dilenschneider, K. G. Hanson, S. Mukherjee, V. Ganesan, B. D. Freeman, and M. M. Abu-Omar 2021. Engineering Li/Na selectivity in 12-Crown-4–functionalized polymer membranes. Proceedings of the National Academy of Sciences 118:1–8 .
  • Warren, I. 2021. Techno-economic analysis of lithium extraction from geothermal brines. National Renewable Energy Lab.(NREL), Golden, CO (United States).
  • Wedepohl K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59:1217–1232.
  • Wei, S., Y. Wei, T. Chen, C. Liu, and Y. Tang 2020. Porous lithium ion sieves nanofibers: General synthesis strategy and highly selective recovery of lithium from brine water. Chemical Engineering Journal 379:122407.
  • Wen, X., P. Ma, C. Zhu, Q. He, and X. Deng 2006. Preliminary study on recovering lithium chloride from lithium-containing waters by nanofiltration. Separation and Purification Technology 49:230–36.
  • Weng, D., H. Duan, Y. Hou, J. Huo, L. Chen, F. Zhang, and J. Wang 2020. Introduction of manganese based lithium-ion Sieve-A review. Progress in Natural Science: Materials International 30:139–52.
  • Wenger, M., and T. Armbruster 1991. Crystal chemistry of lithium: Oxygen coordination and bonding. European Journal of Mineralogy 3:387–400.
  • Williams, L. B., and R. L. Hervig 2005. Lithium and boron isotopes in illite-smectite: The importance of crystal size. Geochimica et cosmochimica acta 69:5705–16.
  • Wiśniewska, M., G. Fijałkowska, I. Ostolska, W. Franus, A. Nosal-Wiercińska, B. Tomaszewska, J. Goscianska, and G. Wójcik 2018. Investigations of the possibility of lithium acquisition from geothermal water using natural and synthetic zeolites applying poly (acrylic acid). Journal of Cleaner Production 195:821–30.
  • Wunder, B., A. Meixner, R. L. Romer, A. Feenstra, G. Schettler, and W. Heinrich 2007. Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: An experimental study. Chemical Geology 238:277–90.
  • Xiang, W., S. Liang, Z. Zhou, W. Qin, and W. Fei 2016. Extraction of lithium from salt lake brine containing borate anion and high concentration of magnesium. Hydrometallurgy 166:9–15.
  • Xiao, J., X. Nie, S. Sun, X. Song, P. Li, and J. Yu 2015b. Lithium ion adsorption–desorption properties on spinel Li4Mn5O12 and pH-dependent ion-exchange model. Advanced Powder Technology 26:589–94.
  • Xiao, J.-L., S.-Y. Sun, X. Song, P. Li, and Y. J-g. 2015a. Lithium ion recovery from brine using granulated polyacrylamide–MnO2 ion-sieve. Chemical Engineering Journal 279:659–66.
  • Xiao, G., K. Tong, L. Zhou, J. Xiao, S. Sun, P. Li, and J. Yu 2012. Adsorption and desorption behavior of lithium ion in spherical PVC–MnO2 ion sieve. Industrial & Engineering Chemistry Research 51:10921–29.
  • Xu, X., Y. Chen, P. Wan, K. Gasem, K. Wang, T. He, H. Adidharma, and M. Fan 2016. Extraction of lithium with functionalized lithium ion-sieves. Progress in Materials Science 84:276–313.
  • Xu, C., Q. Dai, L. Gaines, M. Hu, A. Tukker, and B. Steubing 2020. Future material demand for automotive lithium-based batteries. Communications Materials 1:1–10.
  • Xue, F., X. Zhang, Y. Niu, C. Yi, S. Ju, and W. Xing 2020. Preparation and evaluation of α-Al2O3 supported lithium ion sieve membranes for Li+ extraction. Chinese Journal of Chemical Engineering 28:2312–18.
  • Yaksic, A., and J. E. Tilton 2009. Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium. Resources Policy 34:185–94.
  • Yang, X., Y. Makita, J. Hosokawa, K. Sakane, and K. Ooi 2005. Preparation and alkali metal ion exchange properties of protonated Rb8Nb22O59 compound. Chemistry of Materials 17:5420–27.
  • Yang, Y., X. Meng, H. Cao, X. Lin, C. Liu, Y. Sun, Y. Zhang, and Z. Sun 2018. Selective recovery of lithium from spent lithium iron phosphate batteries: A sustainable process. Green Chemistry 20:3121–33.
  • Yoshinaga, T., K. Kawano, and H. Imoto 1986. Basic study on lithium recovery from lithium containing solution. Bulletin of the Chemical Society of Japan 59:1207–13.
  • Yoshizuka, K., S. Nishihama, M. Takano, and S. Asano. 2021. Lithium recovery from brines with Novel λ-MnO2 adsorbent synthesized by hydrometallurgical method. Solvent Extraction and Ion Exchange 39:604–621.
  • Zamzow, M. J., B. R. Eichbaum, K. R. Sandgren, and D. E. Shanks 1990. Removal of heavy metals and other cations from wastewater using zeolites. Separation Science and Technology 25:1555–69.
  • Zamzow, M. J., and J. E. Murphy 1992. Removal of metal cations from water using zeolites. Separation Science and Technology 27:1969–84.
  • Zandvakili, S., and M. Ranjbar 2018. Preparation and characterisation of lithium ion exchange composite for the recovery of lithium from brine. Mineral Processing and Extractive Metallurgy 127:176–81.
  • Zhang, Y., Y. Hu, L. Wang, and W. Sun 2019. Systematic review of lithium extraction from salt-lake brines via precipitation approaches. Minerals Engineering 139:105868.
  • Zhang, Q.-H., S.-P. Li, S.-Y. Sun, X.-S. Yin, and J.-G. Yu. 2010b. LiMn2O4 spinel direct synthesis and lithium ion selective adsorption. Chemical Engineering Science 65:169–73.
  • Zhang, Q.-H., S.-P. Li, S.-Y. Sun, X.-S. Yin, and J.-G. Yu. 2010c. Lithium selective adsorption on low-dimensional titania nanoribbons. Chemical Engineering Science 65:165–68.
  • Zhang, Q.-H., S. Sun, S. Li, H. Jiang, and J.-G. Yu. 2007. Adsorption of lithium ions on novel nanocrystal MnO2. Chemical Engineering Science 62:4869–74.
  • Zhang, D., C.-H. Zhou, C.-X. Lin, D.-S. Tong, and Y. W-h. 2010a. Synthesis of clay minerals. Applied Clay Science 50:1–11.
  • Zhao, Q., J.-M. Gao, Y. Guo, and F. Cheng 2018. Facile synthesis of magnetically recyclable Fe-doped lithium ion sieve and its Li adsorption performance. Chemistry Letters 47:1308–10.
  • Zhao, Z., X. Si, X. Liu, L. He, and X. Liang 2013. Li extraction from high Mg/Li ratio brine with LiFePO4/FePO4 as electrode materials. Hydrometallurgy 133:75–83.
  • Zhou, C., A. Alshameri, C. Yan, X. Qiu, H. Wang, and Y. Ma 2013. Characteristics and evaluation of synthetic 13X zeolite from Yunnan’s natural halloysite. Journal of Porous Materials 20:587–94.
  • Zhu, Q., Aller, R. C., and Fan, Y. 2006. Two-dimensional pH distributions and dynamics in bioturbated marine sediments. Geochimica et Cosmochimica Acta 70:4933–4949.
  • Zhu, G., P. Wang, P. Qi, and C. Gao 2014. Adsorption and desorption properties of Li+ on PVC-H1. 6Mn1. 6O4 lithium ion-sieve membrane. Chemical Engineering Journal 235:340–48.
  • Ziemann, S., D. B. Müller, L. Schebek, and M. Weil 2018. Modeling the potential impact of lithium recycling from EV batteries on lithium demand: A dynamic MFA approach. Resources, Conservation and Recycling 133:76–85.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.