144
Views
2
CrossRef citations to date
0
Altmetric
Articles

Atomic simulation of Xe and Kr separation in silica-templated amorphous mesoporous carbons CMK-3 and CMK-5

&
Pages 1546-1555 | Received 01 Sep 2016, Accepted 21 May 2017, Published online: 15 Jun 2017
 

Abstract

We perform a molecular simulation study on adsorption and separation of the noble gases Xe and Kr in silica-templated amorphous mesoporous carbons (CMK) materials. We generate the atomic models of CMK-3 and CMK-5 materials by adsorbing carbon in a model MCM-41 pore. Our carbon structures can capture the surface roughness and the disordered nature of the carbon rods and carbon pipes as reported in the experiment. The adsorption isotherms and isosteric heats of pure gases have been examined further. We find that the existence of the carbon interconnections between nanorods for CMK-3 and between nanopipes for CMK-5 will reduce the excess uptakes of the noble gases, whereas the isosteric heats are favoured in the materials with interconnections. The carbon interconnections are not advantageous to the adsorption storage of pure gases, but they can improve the separation ability of Xe for gas-mixture adsorption. The effects of temperature and concentration on the Xe separation are investigated and it is shown that the selectivities of Xe in the CMK-5 materials are insensitive to the two factors. We also find that both gas storage and separation of CMK materials are comparable to IRMOF-1 and UMCM-1 metal-organic frameworks.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.