144
Views
2
CrossRef citations to date
0
Altmetric
Articles

Atomic simulation of Xe and Kr separation in silica-templated amorphous mesoporous carbons CMK-3 and CMK-5

&
Pages 1546-1555 | Received 01 Sep 2016, Accepted 21 May 2017, Published online: 15 Jun 2017

References

  • Meek ST, Teich-McGoldrick SL, Perry JJ, et al. Effects of polarizability on the adsorption of noble gases at low pressures in monohalogenated isoreticular metal-organic frameworks. J Phys Chem C. 2012;116:19765–19772.10.1021/jp303274m
  • Ryan P, Farha OK, Broadbelt LJ, et al. Computational screening of metal-organic frameworks for xenon/krypton separation. AIChE J. 2011;57:1759–1766.10.1002/aic.v57.7
  • Sikora BJ, Wilmer CE, Greenfield ML, et al. Thermodynamic analysis of Xe/Kr selectivity in over 137 000 hypothetical metal–organic frameworks. Chem Sci. 2012;3:2217–2223.10.1039/c2sc01097f
  • Banerjee D, Simon CM, Plonka AM, et al. Metal-organic framework with optimally selective xenon adsorption and separation. Nat Commun. 2016;7: ncomms11831. DOI:10.1038/ncomms11831
  • Simon CM, Mercado R, Schnell SK, et al. What are the best materials to separate a xenon/krypton mixture? Chem Mater. 2015;27:4459–4475.10.1021/acs.chemmater.5b01475
  • Greathouse JA, Kinnibrugh TL, Allendorf MD. Adsorption and separation of noble gases by IRMOF-1: grand canonical Monte Carlo simulations. Ind Eng Chem Res. 2009;48:3425–3431.10.1021/ie801294n
  • Banerjee D, Cairns AJ, Liu J, et al. Potential of metal-organic frameworks for separation of xenon and krypton. Acc Chem Res. 2015;48:211–219.10.1021/ar5003126
  • Thallapally PK, Grate JW, Motkuri RK. Facile xenon capture and release at room temperature using a metal-organic framework: a comparison with activated charcoal. Chem. Commun. 2012;48:347–349.10.1039/C1CC14685H
  • Liu J, Thallapally PK, Strachan D. Metal-organic frameworks for removal of Xe and Kr from nuclear fuel reprocessing plants. Langmuir. 2012;28:11584–11589.10.1021/la301870n
  • Liu J, Strachan DM, Thallapally PK. Enhanced noble gas adsorption in Ag@MOF-74Ni. Chem Commun. 2014;50:466–468.10.1039/C3CC47777K
  • Chen X, Plonka AM, Banerjee D, et al. Direct observation of Xe and Kr adsorption in a Xe-selective microporous metal-organic framework. J Am Chem Soc. 2015;137:7007–7010.10.1021/jacs.5b02556
  • Chen L, Reiss PS, Chong SY, et al. Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nat Mater. 2014;13:954–960.10.1038/nmat4035
  • Liu J, Fernandez CA, Martin PF, et al. A two-column method for the separation of Kr and Xe from process off-gases. Ind Eng Chem Res. 2014;53:12893–12899.10.1021/ie502156h
  • Jun S, Joo SH, Ryoo R, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc. 2000;122:10712–10713.10.1021/ja002261e
  • Solovyov LA, Kim T-W, Kleitz F, et al. Comprehensive structure analysis of ordered carbon nanopipe materials CMK-5 by x-ray diffraction and electron microscopy. Chem Mater. 2004;16:2274–2281.10.1021/cm0352652
  • Kruk M, Jaroniec M, Kim T-W, et al. Synthesis and characterization of hexagonally ordered carbon nanopipes. Chem Mater. 2003;15:2815–2823.10.1021/cm034087+
  • Peng X, Cao D, Wang W. Heterogeneity characterization of ordered mesoporous carbon adsorbent CMK-1 for methane and hydrogen storage: GCMC simulation and comparison with experiment. J Phys Chem C. 2008;112:13024–13036.10.1021/jp8034133
  • Peng X, Cao D, Wang W. Computational characterization of hexagonally ordered carbon nanopipes CMK-5 and structural optimization for H2 storage. Langmuir. 2009;25:10863–10872.10.1021/la901440s
  • Peng X, Cao D, Wang W. Adsorption and separation of CH4/CO2/N2/H2/CO mixtures in hexagonally ordered carbon nanopipes CMK-5. Chem Eng Sci. 2011;66:2266–2276.10.1016/j.ces.2011.02.044
  • Peng X, Cao D, Zhao J. Grand canonical Monte Carlo simulation of methane–carbon dioxide mixtures on ordered mesoporous carbon CMK-1. Sep Purif Technol. 2009;68:50–60.10.1016/j.seppur.2009.04.005
  • Bazan RE, Bastos-Neto M, Moeller A, et al. Adsorption equilibria of O2, Ar, Kr and Xe on activated carbon and zeolites: single component and mixture data. Adsorption. 2011;17:371–383.10.1007/s10450-011-9337-3
  • Foroutan M, Nasrabadi AT. Adsorption and separation of binary mixtures of noble gases on single-walled carbon nanotube bundles. Physica E. 2011;43:851–856.10.1016/j.physe.2010.10.011
  • Garberoglio G. Computer simulation of the adsorption of light gases in covalent organic frameworks. Langmuir. 2007;23:12154–12158.10.1021/la701736m
  • Wang H, Yao K, Zhang Z, et al. The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases. Chem Sci. 2014;5:620–624.10.1039/C3SC52348A
  • Wang Q, Wang H, Peng S, et al. Adsorption and separation of Xe in metal-organic frameworks and covalent-organic materials. J Phys Chem C. 2014;118:10221–10229.10.1021/jp503255g
  • Parmentier J, Saadhallah S, Reda M, et al. New carbons with controlled nanoporosity obtained by nanocasting using a SBA-15 mesoporous silica host matrix and different preparation routes. J Phys Chem Solids. 2004;65:139–146.10.1016/j.jpcs.2003.10.008
  • Roussel T, Pellenq RJM, Bienfait M, et al. Thermodynamic and neutron scattering study of hydrogen adsorption in two mesoporous ordered carbons. Langmuir. 2006;22:4614–4619.10.1021/la0527386
  • Pellenq RJM, Rodts S, Pasquier V, et al. A grand canonical Monte-Carlo simulation study of xenon adsorption in a Vycor-like porous matrix. Adsorption. 2000;6:241–249.
  • Coasne B, Hung FR, Pellenq RJM, et al. Adsorption of simple gases in MCM-41 materials: the role of surface roughness. Langmuir. 2006;22:194–202.10.1021/la051676g
  • Pellenq RJM, Nicholson D. Intermolecular potential function for the physical adsorption of rare gases in silicalite. J Phys Chem. 1994;98:13339–13349.10.1021/j100101a039
  • Brenner DW. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B. 1990;42:9458–9471.10.1103/PhysRevB.42.9458
  • Darmstadt H, Roy C, Kaliaguine S, et al. Surface and pore structures of CMK-5 ordered mesoporous carbons by adsorption and surface spectroscopy. Chem Mater. 2003;15:3300–3307.10.1021/cm020673b
  • Joo SH, Choi SJ, Oh I, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature. 2001;412:169–172.10.1038/35084046
  • Halder P, Maurya M, Jain SK, et al. Understanding adsorption of CO2, N2, CH4 and their mixtures in functionalized carbon nanopipe arrays. Phys Chem Chem Phys. 2016;18:14007–14016.10.1039/C5CP07422C
  • Jain SK, Pellenq RJM, Gubbins KE, et al. Molecular modeling and adsorption properties of ordered silica-templated CMK mesoporous carbons. Langmuir. 2017;33:2109–2121.10.1021/acs.langmuir.6b04169
  • Peng X, Cao D, Wang W. Computational study on purification of CO2 from natural gas by C60 intercalated graphite. Ind Eng Chem Res. 2010;49:8787–8796.10.1021/ie1010433

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.