154
Views
4
CrossRef citations to date
0
Altmetric
Articles

Structural, optical and electronic properties of ZnAg2GeTe4 and ZnAg2Ge0.93Fe0.07Te4 photocatalyst: a first principle approach

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 594-601 | Received 24 Mar 2020, Accepted 11 Dec 2020, Published online: 12 Jan 2021
 

ABSTRACT

By executing the Generalised Gradient Approximation (GGA) based on the Pethew Burke Emzerhof (PBE), the structural geometry, electronic band structures, total density of states (DOS), partial density of states (PDOS) and optical properties for both of undoped and doped ZnAg2GeTe4 were investigated. The calculated band gap of ZnAg2GeTe is 1.06 eV, indicating strong photocatalyst for organic pollutants. To explain the photocatalytic effect owing to hybridisation of orbitals, the DOS were simulated to assess the characteristics of 4s, 3d for Zn, 5s, 4d for Ag, 4s, 3d, 4p for Ge and 4s, 5s 4d 5p for Te orbitals travelling from the highest occupied valance bands to the lowest occupied conduction bands. The optical properties, for instance absorption, reflectivity, dielectric function and loss function may be indicated the increased absorption of visible light, as well as corresponds to electronic structure. For better photocatalytic activity, Fe metal was doped by replacing Ge at 7%. After doping, the band gap was decreased from 1.06 eV to 0.09 eV, and DOS was also increased. Nevertheless, optical properties, especially absorption, were also increased which indicates higher photocatalytic activity. It can be concluded that ZnAg2Ge0.93Fe0.07Te4 shows more photocatalytic activity than ZnAg2GeTe4 with the evidences from the band gap and optical properties.

Acknowledgments

The authors would like to thanks, Dr. Md. Jellur Rahman, Associate professor, Department of Physics, BUET, Dhaka and Sunirmal Kumar Biswas, Lecturer, Department of EEE, Prime University.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.