154
Views
4
CrossRef citations to date
0
Altmetric
Articles

Structural, optical and electronic properties of ZnAg2GeTe4 and ZnAg2Ge0.93Fe0.07Te4 photocatalyst: a first principle approach

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 594-601 | Received 24 Mar 2020, Accepted 11 Dec 2020, Published online: 12 Jan 2021

References

  • Dey SI, Ashraful I. A review on textile wastewater characterization in Bangladesh. Resour Environ. 2015;5:15–44.
  • Guttikunda SKB, Bilkis A, Wadud Z. Particulate pollution from brick kiln clusters in the Greater Dhaka region, Bangladesh. Air Qual Atmos Health. 2013;6:357–365.
  • Bhuiyan; Islam MAH, Dampare MA, Samuel B, et al. Evaluation of hazardous metal pollution in irrigation and drinking water systems in the vicinity of a coal mine area of northwestern Bangladesh. J Hazard Mater. 2010;179:1065–1077.
  • Verma AKD, Roshan R, Bhunia P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manage. 2012;93:154–168.
  • Nakashima TOY, Kubota Y, Fujishima A. Photocatalytic decomposition of estrogens in aquatic environment by reciprocating immersion of TiO2 modified polytetrafluoroethylene mesh sheets. J Photochem Photobiol A Chem. 2003;160:115–120.
  • Grzechulska JM, Waldemar A. Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide. Appl Catal B Environ. 2002;36:45–51.
  • Balcioglu IA, Arslan I. Application of photocatalytic oxidation treatment to pretreated and raw effluents from the Kraft bleaching process and textile industry. Environ Pollut. 1998;103:261–268.
  • Pekakis PAX, Nikolaos P, Mantzavinosa D. Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Res. 2006;40:1276–1286.
  • Liu J. Origin of high photocatalytic efficiency in monolayer g-C3N4/CdS heterostructure: a hybrid DFT study. J Phys Chem C. 2015;119:28417–28423.
  • Cheng P, Yinglin W, Xu L, et al. High specific surface area urchin-like hierarchical ZnO-TiO2 architectures: hydrothermal synthesis and photocatalytic properties. Mater Lett. 2016;175:52–55.
  • Pereira JHOS, Vilar VJP, Borges MT, et al. Photocatalytic degradation of oxytetracycline using TiO2 under natural and simulated solar radiation. Solar Energy. 2011;85:2732–2740.
  • Chen X, Shen S, Guo L, et al. Semiconductor-based photocatalytic hydrogen generation. Chem Rev. 2010;110:6503–6570.
  • Fujishima AHK. Tio2 photoelectrochemistry and photocatalysis. Nature. 1972;238:37–38.
  • Liang R, Hu A, Li W, et al. Enhanced degradation of persistent pharmaceuticals found in wastewater treatment effluents using TiO 2 nanobelt photocatalysts. J Nanopart Res. 2013;15:1990.
  • Li G, Nie X, Chen J, et al. Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach. Water Res. 2015;86:17–24.
  • Akpan UGH, Bassim H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater. 2009;170:520–529.
  • Sakthivel S, Neppolian B, Shankar MV, et al. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Mater Solar Cells. 2003;77:65–82.
  • Srikant V, Clarke DR. On the optical band gap of zinc oxide. J Appl Phys. 1998;83:5447–5451.
  • Tahir M, Nabi G, Rafique M, et al. Nanostructured-based WO3 photocatalysts: recent development, activity enhancement, perspectives and applications for wastewater treatment. Int J Environ Sci Technol. 2017;14:2519–2542.
  • Chen S, Walsh A, Luo Y, et al. Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors. Phys Rev B. 2010;82:195203.
  • Nainaa FZ, Bekkioui N, Abbassi A, et al. First principle study of structural, electronic, optical and electric properties of Ag2ZnGeX4 (S, Se). Computat Condensed Matter. 2019;19:e00364.
  • Nainaa F, Ez-Zahrouy H. First-principle study of structural, electronic and optical properties of Cu2FeSnS4 semiconductor. Computat Condensed Matter. 2018;16:e00321.
  • Nainaa FZ, Bekkioui N, Abbassi A, et al. First principle study of structural, electronic optical and electric properties of Ag2MnSnS4. Computat Condensed Matter. 2020;22:e00443–e02020.
  • Moroz M, Tesfaye F, Demchenko P, et al. Thermal stability and thermodynamics of the Ag2ZnGeS 4 compound. In: Lambotte G, Lee J, Allanore A, et al., editors. Materials processing fundamentals 2019. San Antonio (TX): Springer; 2019. 215–226.
  • Cui Z, Bai K, Ding Y, et al. Janus XSSe/SiC (X=Mo, W) van der Waals heterostructures as promising water-splitting photocatalysts. Physica E: Low-Dimens Syst Nanostruct. 2020;123:114207.
  • Fröschl T, Hörmann U, Kubiak P, et al. High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. Chem Soc Rev. 2012;41:5313–5360.
  • Ledoux M, Pham-Huu C. High specific surface area carbides of silicon and transition metals for catalysis. Catal Today. 1992;15:263–284.
  • Russell AS, Stokes Jr JJ. Role of surface area in dehydrocyclization catalysis. Indust Eng Chem. 1946;38:1071–1074.
  • Chakma U, Kumer A, Chakma KB, et al. Electronics structure and optical properties of SrPbO3 and SrPb0.94Fe0.06O3: a first principle approach. Eurasian Chem Commun. 2020;2:573–580.
  • Chakma U, Kumer A, Chakma KB, et al. Electronics structure and optical properties of Ag2BiO3 and (Ag2)0.88Fe0.12BiO3: a first principle approach. Adv J Chem – Sect A. 2020;3:542–550.
  • Mohammad JI, Kumer A. First- principles study of structural, electronic and optical properties of AgSbO3 and AgSb0.78Se0.22O3 photocatalyst. SN Appl Sci. 2020;2:251.
  • Hasan MM, Kumer A, Chakma U. Theoretical investigation of doping effect of Fe for SnWO4 in electronic structure and optical properties: DFT based first principle study. Adv J Chem – Sect A. 2020;3:639–644.
  • Perdew JP, Kieron B, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865.
  • del Campo JMG, José L, Trickey SB, et al. Non-empirical improvement of PBE and its hybrid PBE0 for general description of molecular properties. J Chem Phys. 2012;136:104108.
  • Hammer BH, Bruno L, Nørskov JK. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B. 1999;59:7413.
  • Jain A, Ong SP, Hautier G, et al. Commentary: The materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013;1:011002.
  • Wu C-H, Chang C-L. Decolorization of reactive Red 2 by advanced oxidation processes: comparative studies of homogeneous and heterogeneous systems. J Hazard Mater. 2006;128:265–272.
  • Xing J, Jiang HB, Chen JF, et al. Active sites on hydrogen evolution photocatalyst. J Mater Chem A. 2013;1:15258–15264.
  • Berning PH, Hass G, Madden RP. Reflectance-increasing coatings for the vacuum ultraviolet and their applications. JOSA. 1960;50:586–597.
  • Lucarini V, Saarinen JJ, Peiponen K-E, et al. Kramers-Kronig relations in optical materials research 110. Berlin: Springer Science & Business Media; 2005.
  • Bertsch GF, Iwata JI, Rubio A, et al. Real-space, real-time method for the dielectric function. Phys Rev B. 2000;62:7998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.