379
Views
3
CrossRef citations to date
0
Altmetric
Articles

Atomistic approach to analyse transportation of water nanodroplet through a vibrating nanochannel: scope in bio-NEMS applications

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 737-744 | Received 18 Nov 2021, Accepted 07 Mar 2022, Published online: 19 Mar 2022
 

ABSTRACT

Vibrating nanochannels are gaining interest in the fields of bio nano electromechanical systems (bio-NEMS) owing to their acoustic streaming ability (as a tail of nano-swimmers) and drug transportation mechanism. However, it is challenging to articulate such a mechanism experimentally. In this paper, molecular dynamic simulations are carried out to study the effect of the wall vibrations on the forced transportation of a water nanodroplet through a vibrating nanochannel. Here, the motion of water molecules was governed by modified Lennard–Jones (LJ) potential with an initial hydrophobic solid–liquid interface between the walls of nanochannel and water molecules. The density distribution of water molecules was spread towards the nanochannel walls for high vibration (2 (Å) amplitude and 60 GHz frequencies). The average resistance force increased 95.2% for high configuration wall vibrations, showing an increase of 13.96 pN, compared to 7.15 pN for low configuration wall vibrations (0.5 (Å) amplitude and 15 GHz frequency). This work may have significant implications for the application in the fields such as targeted drug delivery, enhanced oil recovery, nanofluidics and inkjet printing.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work is supported by Additional competitive research grant BITS Pilani.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.