379
Views
3
CrossRef citations to date
0
Altmetric
Articles

Atomistic approach to analyse transportation of water nanodroplet through a vibrating nanochannel: scope in bio-NEMS applications

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 737-744 | Received 18 Nov 2021, Accepted 07 Mar 2022, Published online: 19 Mar 2022

References

  • Rayleigh L. On the capillary phenomena of jets. Proc R Soc Lond. 1879;29(196–199):71–97.
  • Mahmood A, Chen S, Chen L, et al. Unidirectional transport of water nanodroplets entrapped inside a nonparallel smooth surface: a molecular dynamics simulation study. RSC Adv. 2019;9(72):41984–41992.
  • Giussani L, Tabacchi G, Coluccia S, et al. Confining a protein-containing water nanodroplet inside silica nanochannels. Int J Mol Sci. 2019;20(12):2965.
  • Gouaux E, MacKinnon R. Principles of selective ion transport in channels and pumps. Science. 2005;310(5753):1461–1465.
  • Glynn I. Annual review prize lecture. ‘All hands to the sodium pump’. J Physiol (Lond). 1993;462(1):1–30.
  • Mashaghi S, Jadidi T, Koenderink G, et al. Lipid nanotechnology. Int J Mol Sci. 2013;14(2):4242–4282.
  • Lodish H, Berk A, Zipursky SL, et al. Osmosis, water channels, and the regulation of cell volume. In: Molecular cell biology. 4th ed. WH Freeman; 2000. New York, USA.
  • Esteban-Fernández de Ávila B, Angell C, Soto F, et al. Acoustically propelled nanomotors for intracellular sirna delivery. ACS Nano. 2016;10(5):4997–5005.
  • Wang W, Li S, Mair L, et al. Acoustic propulsion of nanorod motors inside living cells. Angew Chem Int Ed. 2014;53(12):3201–3204.
  • Vukasinovic B. Vibration-induced droplet atomization. Atlanta, USA: Georgia Institute of Technology; 2002.
  • Pillai R, Borg MK, Reese JM. Dynamics of nanodroplets on vibrating surfaces. Langmuir. 2018;34(39):11898–11904.
  • Friend J, Yeo LY. Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev Mod Phys. 2011;83(2):647.
  • Yeo LY, Friend JR. Surface acoustic wave microfluidics. Annu Rev Fluid Mech. 2014;46:379–406.
  • Choi J, Feurer T, Yamaguchi M, et al. Generation of ultrahigh-frequency tunable acoustic waves. Appl Phys Lett. 2005;87(8):Article ID 081907.
  • Ivry Y, Wang N, Durkan C. High-frequency programmable acoustic wave device realized through ferroelectric domain engineering. Appl Phys Lett. 2014;104(13):Article ID 133505.
  • Shilton RJ, Travagliati M, Beltram F, et al. Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves. Adv Mater. 2014;26(29):4941–4946.
  • Zhang H, Banfield JF. Interatomic coulombic interactions as the driving force for oriented attachment. CrystEngComm. 2014;16(8):1568–1578.
  • Srivastava I, Kotia A, Ghosh SK, et al. Recent advances of molecular dynamics simulations in nanotribology. J Mol Liq. 2021;335:Article ID 116154.
  • Salo-Ahen OM, Alanko I, Bhadane R, et al. Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes. 2021;9(1):71.
  • Qin Y, Zhao J, Liu Z, et al. Study on effect of different surface roughness on nanofluid flow in nanochannel by using molecular dynamics simulation. J Mol Liq. 2021;346:Article ID 117148.
  • Schoch RB, Han J, Renaud P. Transport phenomena in nanofluidics. Rev Mod Phys. 2008;80(3):839.
  • Zhang K, Wang Fh, Lu Yj. Molecular dynamics simulation of continuous nanoflow transport through the uneven wettability channel. AIP Adv. 2018;8(1):Article ID 015111.
  • Ritos K, Mattia D, Calabrò F, et al. Flow enhancement in nanotubes of different materials and lengths. J Chem Phys. 2014;140(1):Article ID 014702.
  • Nagayama G, Cheng P. Effects of interface wettability on microscale flow by molecular dynamics simulation. Int J Heat Mass Transf. 2004;47(3):501–513.
  • Casalini T, Rosolen A, Henriques CYH, et al. Permeation of biopolymers across the cell membrane: a computational comparative study on polylactic acid and polyhydroxyalkanoate. Front Bioeng Biotechnol. 2020;8:718.
  • Zhao W, Tian Y, Cai M, et al. Studying the nucleated mammalian cell membrane by single molecule approaches. PLoS ONE. 2014 05;9:1–13.
  • Hui X, Chao L. Molecular dynamics simulations of gas flow in nanochannel with a janus interface. AIP Adv. 2012;2(4):Article ID 042126.
  • Alexiadis A, Kassinos S. Molecular simulation of water in carbon nanotubes. Chem Rev. 2008;108(12):5014–5034.
  • Beutler TC, Mark AE, van Schaik RC, et al. Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem Phys Lett. 1994;222(6):529–539.
  • Allen MP, Tildesley DJ. Computer simulation of liquids. New York, USA: Oxford University Press; 2017.
  • Ho TA, Wang Y, Jové Colón CF, et al. Fast advective water flow through nanochannels in clay interlayers: implications for moisture transport in soils and unconventional oil/gas production. ACS Appl Nano Mater. 2020;3(12):11897–11905.
  • Lu M, Connell LD, Lei H. Water flow behaviour in nanochannels: the surface-force effect and slip length. SN Appl Sci. 2019;1(10):1–11.
  • Trapuzzano MA, Crane NB, Guldiken R, et al. Forced wetting of liquids using ultrasonic surface vibration. In: ASME International Mechanical Engineering Congress and Exposition. Vol. 52101. American Society of Mechanical Engineers; 2018. p. V007T09A063.
  • Vukasinovic B, Smith MK, Glezer A. Dynamics of a sessile drop in forced vibration. J Fluid Mech. 2007;587:395–423.
  • Chang CT, Bostwick JB, Steen PH, et al. Substrate constraint modifies the rayleigh spectrum of vibrating sessile drops. Phys Rev E. 2013;88(2):Article ID 023015.
  • Galleguillos-Silva R, Vargas-Hernández Y, Gaete-Garretón L. Wettability of a surface subjected to high frequency mechanical vibrations. Ultrason Sonochem. 2017;35:134–141.
  • Candia-Muñoz N, Gaete-Garretón L, Vargas-Hernández Y, et al. Spreading of water drop on a vibrating surface. In: Proceedings of Meetings on Acoustics 6ICU. Vol. 32. Acoustical Society of America; 2017. p. 032005.
  • Chen S, Cheng Y, Zhang G, et al. Spontaneous directional motion of water molecules in single-walled carbon nanotubes with a stiffness gradient. Nanoscale Adv. 2019;1(3):1175–1180.
  • Singh D. Experimental and simulation studies of the permeation of water through polydimethylsiloxane (PDMS) [dissertation]. 2014.
  • Swapnasrita S. Prediction of properties of fluids by molecular simulation techniques [dissertation]. 2016.
  • Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. Vol. 1. Florida, USA: Elsevier; 2001.
  • Kondratyuk N,Norman G,Stegailov V.Rheology of liquid n-triacontane: molecular dynamics simulation. J Phys Conf Ser. 2016;774:Article ID 012039. IOP Publishing.
  • Bian X, Kim C, Karniadakis GE. 111 years of brownian motion. Soft Matter. 2016;12(30):6331–6346.
  • Li Z, Hong L. On the knudsen transport of gases in nanochannels. J Chem Phys. 2007;127(7):Article ID 074706.
  • Ahmed D, Baasch T, Jang B, et al. Artificial swimmers propelled by acoustically activated flagella. Nano Lett. 2016;16(8):4968–4974.
  • Hu M, Ge X, Chen X, et al. Micro/nanorobot: a promising targeted drug delivery system. Pharmaceutics. 2020;12(7):665.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.