544
Views
21
CrossRef citations to date
0
Altmetric
Articles

Adjusting biomaterial composition to achieve controlled multiple-day release of dexamethasone from an extended-wear silicone hydrogel contact lens

, , &
Pages 88-100 | Received 14 Jun 2013, Accepted 27 Aug 2013, Published online: 27 Sep 2013
 

Abstract

Purpose: To alter the composition and structure of silicone hydrogel contact lenses to achieve controlled release of dexamethasone and evaluate the lens optical and mechanical properties compared to commercial lenses. There is a tremendous need for controlled release of drugs from ocular biomaterials as the majority of ophthalmic drugs are delivered via topical eye drops, which have low bioavailability and patient compliance.

Methods: Poly(PDMS-co-TRIS-co-DMA) contact lenses were synthesized with varying PDMS/TRIS:DMA ratios (0.25:1, 0.67:1, 1.5:1) as well as with additional crosslinking monomers. Lenses were characterized via in vitro release studies in a microfluidic device at ocular flowrates and in large well-mixed volumes, optical quality studies over visible wavelengths, mechanical analysis, and determination of polymer volume fraction in the swollen state.

Results: Extended and controlled release of therapeutically relevant concentrations of dexamethasone was achieved for multiple day, continuous wear up to 60 days at in vitro ocular flowrates. Release was delayed due to a combination of increased hydrophobic to hydrophilic composition and the inclusion of additional structural constraints, both of which decreased the polymer volume fraction in the swollen state. However, decreased mass release rates were at the expense of increased modulus and decreased lens flexibility. All lenses had high optical clarity (∼90% transmittance) and contained highly oxygen permeable siloxane composition similar to those found in commercial silicone hydrogel lenses, but they had poor flexibility for use as soft contact lenses.

Conclusions: Based on our results, the lenses described herein likely have too high of a modulus for use as extended-wear, soft contact lenses with drug release. Therefore, other controlled release methods would be better suited for maintaining adequate mechanical properties and achieving controlled and extended release for the duration of wear in soft, silicone hydrogel contact lens biomaterials. However, these biomaterials may find clinical use as more rigid gas permeable contact lenses or inserts.

Acknowledgments

We acknowledge the NSF REU Site in Micro/Nano-Structured Materials, Therapeutics, and Devices (EES Award 1063107) for funding part of this research (JCK was an NSF REU Fellow).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.