324
Views
1
CrossRef citations to date
0
Altmetric
Article

Multi-responsive on-demand drug delivery PMMA-co-PDEAEMA platform based on CO2, electric potential, and pH switchable nanofibrous membranes

, , , , , ORCID Icon & ORCID Icon show all
Pages 351-371 | Received 09 May 2022, Accepted 29 Aug 2022, Published online: 15 Sep 2022
 

Abstract

This study investigated the release characteristics of curcumin (CUR)-loaded switchable poly(methyl methacrylate)-co-poly(N,N-diethylaminoethyl methacrylate) (PMMA-co-PDEAEMA) membranes following the application of various stimuli, as well as the platform’s applicability in wound dressing and tissue engineering applications. The free-radical polymerization method was used to synthesize the PMMA-co-PDEAEMA copolymer. The drug-loaded nanofibrous membrane with electric potential (EP)-, CO2-, and pH-responsive properties was developed by the electrospinning of PMMA-co-PDEAEMA and CUR. The resulted structure was characterized by a scanning electron microscope (SEM) coupled with X-ray energy dispersive spectroscopy and wide-angle X-ray scattering measurements. The release characteristics of the CUR-loaded wound covering were analyzed in various simulated environments at varying voltages, alternated CO2/N2 gas bubbling, and at two different pH values; the results demonstrated high drug release controllability. Loaded CUR displayed high stability and better solubility compared with free CUR. The CUR-loaded tissue also exhibited high antibacterial activity against Escherichia coli and staphylococcus aureus bacteria. In addition, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay depicted high biocompatibility of up to 95% in the CUR-loaded membrane. This platform could be a promising candidate for usage in tissue engineering and medical applications such as targeted drug delivery, biodetection, reversible cell capture-and-release systems, and biosensors.

Acknowledgment

The authors would like to thank Maral Ziaie for her direct contribution and support in this article.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.