324
Views
1
CrossRef citations to date
0
Altmetric
Article

Multi-responsive on-demand drug delivery PMMA-co-PDEAEMA platform based on CO2, electric potential, and pH switchable nanofibrous membranes

, , , , , ORCID Icon & ORCID Icon show all
Pages 351-371 | Received 09 May 2022, Accepted 29 Aug 2022, Published online: 15 Sep 2022

References

  • Ho J, Walsh C, Yue D, et al. Current advancements and strategies in tissue engineering for wound healing: a comprehensive review. Adv Wound Care. 2017;6(6):191–209.
  • Huang ZM, Zhang YZ, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63(15):2223–2253.
  • Schmidt S, Motschmann H, Hellweg T, et al. Thermoresponsive surfaces by spin-coating of PNIPAM-co-PAA microgels: a combined AFM and ellipsometry study. Polymer (Guildf). 2008;49(3):749–756.
  • Wang H, Xue Y, Lin T. One-step vapour-phase formation of patternable, electrically conductive, superamphiphobic coatings on fibrous materials. Soft Matter. 2011;7(18):8158.
  • Gorji M, Jeddi AAA, Gharehaghaji AA. Fabrication and characterization of polyurethane electrospun nanofiber membranes for protective clothing applications. J Appl Polym Sci. 2012;125(5):4135–4141.
  • Borges J, Rodrigues LC, Reis RL, et al. Layer-by-layer assembly of light-responsive polymeric multilayer systems. Adv Funct Mater. 2014;24(36):5624–5648.
  • Che H, Huo M, Peng L, et al. CO2-responsive nanofibrous membranes with switchable oil/water wettability. Angew Chem Int Ed. 2015;54(31):8934–8938.
  • Wang F, Hu S, Jia Q, et al. Advances in electrospinning of natural biomaterials for wound dressing. J Nanomater. 2020;2020:1–14.
  • Li Y, Wang J, Wang Y, et al. Advanced electrospun hydrogel fibers for wound healing. Compos Part B Eng. 2021;223:109101.
  • Alven S, Nqoro X, Aderibigbe BA. Polymer-based materials loaded with curcumin for wound healing applications. Polymers (Basel). 2020;12(10):2286.
  • Gizaw M, Thompson J, Faglie A, et al. Electrospun fibers as a dressing material for drug and biological agent delivery in wound healing applications. Bioengineering. 2018;5(1):9.
  • Ranade VV, Hollinger MA, Cannon JB. Role of polymers in drug delivery. In: Drug delivery systems (3rd ed.). Boca Raton: CRC Press; 2011.
  • Shi X, Zheng Y, Wang G, et al. PH- and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery. RSC Adv. 2014;4(87):47056–47065.
  • Priya James H, John R, Alex A, et al. Smart polymers for the controlled delivery of drugs – a concise overview. Acta Pharm Sin B. 2014;4(2):120–127.
  • He Q, Chen J, Yan J, et al. Tumor microenvironment responsive drug delivery systems. Asian J Pharm Sci. 2020;15(4):416–448.
  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, et al. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64(5):1020–1037.
  • Liu D, Yang F, Xiong F, et al. The smart drug delivery system and its clinical potential. Theranostics. 2016;6(9):1306–1323.
  • Lee SM, Nguyen ST. Smart nanoscale drug delivery platforms from stimuli-responsive polymers and liposomes. Macromolecules. 2013;46(23):9169–9180.
  • Shim G, Ko S, Kim D, et al. Light-switchable systems for remotely controlled drug delivery. J Control Release. 2017;267:67–79.
  • Aguilar M, Elvira C, Gallardo a, et al. Smart polymers and their applications as biomaterials. Top Tissue Eng. 2007;13:2–27.
  • Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv. Rev. 2006; 58(15):1655–1670.
  • Bawa P, Pillay V, Choonara YE, et al. Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater. 2009;4(2):022001.
  • Aguilar MR, San Román J. Smart polymers and their applications. Cambridge: Elsevier/Woodhead publishing; 2014;
  • Wang B, Liang W, Guo Z, et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem Soc Rev. 2015;44(1):336–361.
  • Gorji M, Mazinani S, Farokhmehr A, et al. One polymer, one layer, and two opposite functions: using a pH-switchable polymer to fabricate a hydrophilic–hydrophobic fibrous membrane. J Appl Polym Sci. 2020;137(36):49064.
  • Das SS, Bharadwaj P, Bilal M, et al. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers (Basel). 2020;12(6):1397.
  • Wei P, Cornel EJ, Du J. Ultrasound-responsive polymer-based drug delivery systems. Drug Deliv Transl Res. 2021;11:1323–1339.
  • Amoli-Diva M, Sadighi-Bonabi R, Pourghazi K. Switchable on/off drug release from gold nanoparticles-grafted dual light- and temperature-responsive hydrogel for controlled drug delivery. Mater Sci Eng C Mater Biol Appl. 2017;76:242–248.
  • Varum F, Freire AC, Fadda HM, et al. A dual pH and microbiota-triggered coating (PhloralTM) for fail-safe colonic drug release. Int J Pharm. 2020;583:119379.
  • Guo X, Mei J, Zhang C. Development of drug dual-carriers delivery system with mitochondria-targeted and pH/heat responsive capacity for synergistic photothermal-chemotherapy of ovarian cancer. Int J Nanomed. 2020;15:301–313.
  • Ibekwe VC, Khela MK, Evans DF, et al. A new concept in colonic drug targeting: a combined pH-responsive and bacterially-triggered drug delivery technology. Aliment Pharmacol Ther. 2008;28(7):911–916.
  • Tebaldi ML, Oda CMR, Monteiro LOF, et al. Biomedical nanoparticle carriers with combined thermal and magnetic response: current preclinical investigations. J Magn Magn Mater. 2018;461:116–127.
  • Lin S, Theato P. CO2-responsive polymers. Macromol Rapid Commun. 2013;34(14):1118–1133.
  • Jiang B, Zhang Y, Huang X, et al. Tailoring CO2-responsive polymers and nanohybrids for green chemistry and processes. Ind Eng Chem Res. 2019;58(33):15088–15108.
  • Ofridam F, Tarhini M, Lebaz N, et al. pH-sensitive polymers: classification and some fine potential applications. Polym Adv Technol. 2021;32:1455–1484.
  • Dehkordi TF, Shirin-Abadi AR, Karimipour K, et al. CO2-, electric potential-, and photo-switchable-hydrophilicity membrane (x-SHM) as an efficient color-changeable tool for oil/water separation. Polymer (Guildf). 2021;212:123250.
  • Kurzawa C, Hengstenberg A, Schuhmann W. Immobilization method for the preparation of biosensors based on pH shift-induced deposition of biomolecule-containing polymer films. Anal Chem. 2002;74(2):355–361.
  • Blossey R. Self-cleaning surfaces – virtual realities. Nat Mater. 2003;2:301–306.
  • Ma H, Hyun J, Stiller P, et al. “Non-Fouling” oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Adv Mater. 2004;16(4):338–341.
  • Zhang Z, Chen S, Jiang S. Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules. 2006;7(12):3311–3315.
  • Bae YH. Smart polymers in drug delivery. Pharm News. 2002;9(6):417–424.
  • Lipp L, Sharma D, Banerjee A, et al. In vitro and in vivo optimization of phase sensitive smart polymer for controlled delivery of rivastigmine for treatment of Alzheimer’s disease. Pharm Res. 2020;37(3):34.
  • Alsehli M. Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: recent advances in drug delivery. Saudi Pharm J. 2020;28(3):255–265.
  • Xie A, Hanif S, Ouyang J, et al. Stimuli-responsive prodrug-based cancer nanomedicine. EBioMedicine. 2020;56:102821.
  • Li JJ, Zhu LT, Luo ZH. Electrospun fibrous membrane with enhanced swithchable oil/water wettability for oily water separation. Chem Eng J. 2016;287:474–481.
  • Huo Q, Zhu J, Niu Y, et al. PH-triggered surface charge-switchable polymer micelles for the co-delivery of paclitaxel/disulfiram and overcoming multidrug resistance in cancer. Int J Nanomed. 2017;12:8631–8647.
  • Zhang Y, Guo Q, An S, et al. ROS-Switchable polymeric nanoplatform with Stimuli-Responsive release for active targeted drug delivery to breast cancer. ACS Appl Mater Interfaces. 2017;9(14):12227–12240.
  • Ghani M, Heiskanen A, Kajtez J, et al. On-demand reversible UV-triggered interpenetrating polymer network-based drug delivery system using the spiropyran-merocyanine hydrophobicity switch. ACS Appl Mater Interfaces. 2021;13(3):3591–3604.
  • Hassanzadeh K, Buccarello L, Dragotto J, et al. Obstacles against the marketing of curcumin as a drug. Int J Mol Sci. 2020;21(18):6619.
  • Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol. 2007;595:105–125.
  • Lee W-H, Loo C-Y, Bebawy M, et al. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol. 2013;11(4):338–378.
  • Howaili F, Özliseli E, Küçüktürkmen B, et al. Stimuli-responsive, plasmonic nanogel for dual delivery of curcumin and photothermal therapy for cancer treatment. Front Chem. 2020;8:602941.
  • Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of curcuma longa: a review of preclinical and clinical research. Altern Med Rev. 2009;14(2):141–153.
  • Babaei F, Nassiri-Asl M, Hosseinzadeh H. Curcumin (a constituent of turmeric): new treatment option against COVID-19. Food Sci Nutr. 2020;8(10):5215–5227.
  • Thimmulappa RK, Mudnakudu-Nagaraju KK, Shivamallu C, et al. Antiviral and immunomodulatory activity of curcumin: a case for prophylactic therapy for COVID-19. Heliyon. 2021;7(2):e06350.
  • Almeida E, Bellettini IC, Garcia FP, et al. Curcumin-loaded dual pH- and thermo-responsive magnetic microcarriers based on pectin maleate for drug delivery. Carbohydr Polym. 2017;171:259–266.
  • Priyadarsini KI. The chemistry of curcumin: from extraction to therapeutic agent. Molecules. 2014;19(12):20091–20112.
  • Schneider C, Gordon ON, Edwards RL, et al. Degradation of curcumin: from mechanism to biological implications. J Agric Food Chem. 2015;63(35):7606–7614.
  • Liu Q, Zhou S, Zhao Z, et al. Silk fibroin/polyethylene glycol nanofibrous membranes loaded with curcumin. Therm Sci. 2017;21(4):1587–1594.
  • Saber-Moghaddam N, Salari S, Hejazi S, et al. Oral nano-curcumin formulation efficacy in management of mild to moderate hospitalized coronavirus disease-19 patients: an open label nonrandomized clinical trial. Phyther Res. 2021;35:2616–2623.
  • Awan JA, Rehman SU, Kashif Bangash M, et al. Development and characterization of electrospun curcumin-loaded antimicrobial nanofibrous membranes. Text Res J. 2021;91(13–14):1478–1485.
  • Gorrasi G, Longo R, Viscusi G. Fabrication and characterization of electrospun membranes based on “poly(ε-caprolactone)”, “poly(3-hydroxybutyrate)” and their blend for tunable drug delivery of curcumin. Polymers (Basel). 2020;12(10):2239.
  • Omrani Z, Dadkhah Tehrani A. New cyclodextrin-based supramolecular nanocapsule for codelivery of curcumin and gallic acid. Polym Bull. 2020;77(4):2003–2019.
  • Sinclair SM, Bhattacharyya J, McDaniel JR, et al. A genetically engineered thermally responsive sustained release curcumin depot to treat neuroinflammation. J Control Release. 2013;171(1):38–47.
  • Kim S, Philippot S, Fontanay S, et al. PH- and glutathione-responsive release of curcumin from mesoporous silica nanoparticles coated using tannic acid-Fe(III) complex. RSC Adv. 2015;5(110):90550–90558.
  • Patil PB, Parit SB, Waifalkar PP, et al. pH triggered curcumin release and antioxidant activity of curcumin loaded γ-Fe2O3 magnetic nanoparticles. Mater Lett. 2018;223:178–181.
  • Shi Y, Xiong D, Li Z, et al. Highly efficient and reversible inversion of a pickering emulsion triggered by CO2/N2 at ambient conditions. ACS Sustain Chem Eng. 2018;6(11):15383–15390.
  • Li Z, Zhang L, Wei X, et al. Temperature/pH-responsive hexagonal liquid crystal for curcumin release. Langmuir. 2019;35(2):453–460.
  • Rezaee Shirin-Abadi A, Gorji M, Rezaee S, et al. CO2-Switchable-hydrophilicity membrane (CO2-SHM) triggered by electric potential: faster switching time along with efficient oil/water separation. Chem Commun. 2018;54(61):8478–8481.
  • Kim K, Paik SH, Rhee CK. Water Electrolysis Accompanied by Side Reactions. J Chem Educ. 2021;98(7):2381–2386.
  • Yuan W, Shen J, Zou H. Amphiphilic block copolymer terminated with pyrene group: from switchable CO2-temperature dual responses to tunable fluorescence. RSC Adv. 2015;5(17):13145–13152.
  • Kokabi M, Sirousazar M, Hassan ZM. PVA-clay nanocomposite hydrogels for wound dressing. Eur Polym J. 2007;43(3):773–781.
  • Palza H, Zapata PA, Angulo-Pineda C. Electroactive smart polymers for biomedical applications. Materials (Basel). 2019;12(2):277.
  • Yuvaraj AL, Santhanaraj D. A systematic study on electrolytic production of hydrogen gas by using graphite as electrode. Mater Res. 2014;17(1):83–87.
  • Baek JS, Choo CC, Qian C, et al. Multi-drug-loaded microcapsules with controlled release for management of Parkinson’s disease. Small. 2016;12(27):3712–3722.
  • Wu Y, Lv S, Li Y, et al. Co-delivery of dual chemo-drugs with precisely controlled, high drug loading polymeric micelles for synergistic anti-cancer therapy. Biomater Sci. 2020;8(3):949–959.
  • Iacobino A, Fattorini L, Giannoni F. Drug-resistant tuberculosis 2020: where we stand. Appl Sci. 2020;10(6):2153.
  • Li XY, Xie R, Luo F, et al. CO2-responsive poly(N,N-dimethylaminoethyl methacrylate) hydrogels with fast responsive rate. J Taiwan Inst Chem Eng. 2019;94:135–142.
  • Zhu YJ, Chen F. pH-responsive drug-delivery systems. Chem Asian J. 2015;10(2):284–305.
  • Roointan A, Farzanfar J, Mohammadi-Samani S, et al. Smart pH responsive drug delivery system based on poly(HEMA-co-DMAEMA) nanohydrogel. Int J Pharm. 2018;552(1–2):301–311.
  • Gabriel LP, Rodrigues AA, Macedo M, et al. Electrospun polyurethane membranes for tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2017;72:113–117.
  • Xing X, Cheng G, Yin C, et al. Magnesium-containing silk fibroin/polycaprolactone electrospun nanofibrous scaffolds for accelerating bone regeneration. Arab J Chem. 2020;13(5):5526–5538.
  • Rethinam S, Basaran B, Vijayan S, et al. Electrospun nano-bio membrane for bone tissue engineering application – a new approach. Mater Chem Phys. 2020;249:123010.
  • Dhinasekaran D, Vimalraj S, Rajendran AR, et al. Bio-inspired multifunctional collagen/electrospun bioactive glass membranes for bone tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2021;126:111856.
  • Kangwansupamonkon W, Lauruengtana V, Surassmo S, et al. Antibacterial effect of apatite-coated titanium dioxide for textiles applications. Nanomed Nanotechnol Biol Med. 2009;5(2):240–249.
  • Tyagi P, Singh M, Kumari H, et al. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One. 2015;10(3):e0121313.
  • Zheng D, Huang C, Huang H, et al. Antibacterial mechanism of curcumin: a review. Chem Biodivers. 2020;17(8):e2000171.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.