795
Views
28
CrossRef citations to date
0
Altmetric
Articles

Molecular dynamics study of the interfacial strength between carbon fiber and phenolic resin

, , &
Pages 569-581 | Received 19 Jul 2016, Accepted 21 Jan 2017, Published online: 06 Feb 2017
 

Abstract

The interfacial strength between carbon fiber and phenolic resin is studied using molecular dynamics simulations to demonstrate that carbon fiber-reinforced carbon matrix composites (C/C composites) have improved tensile strength. Simulations are performed using two carbon fiber models, one of which has only carbon atoms and the other has carbon atoms and some fluorinated carbon groups. The carbon fiber models are regarded as two-layer graphite, and the phenolic resin model is treated as cross-linked structures. All force field parameters are based on the Dreiding force field. The tensile stress and interfacial fracture energy are calculated for the estimation of the interfacial strength. The results show that the model including the fluorinated carbon groups has lower interfacial strength than the model having only carbon atoms, up to a certain coating ratio of fluorinated carbon groups. Similarly, within the limits of the coating ratio, the interfacial fracture energy of the fluorinated carbon fiber model is lower than that of carbon fiber model having only carbon atoms.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 751.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.