795
Views
28
CrossRef citations to date
0
Altmetric
Articles

Molecular dynamics study of the interfacial strength between carbon fiber and phenolic resin

, , &
Pages 569-581 | Received 19 Jul 2016, Accepted 21 Jan 2017, Published online: 06 Feb 2017

References

  • Toray Industries Inc., Catalog for TORAYCA. Accessed 21 January 2017. Available from: http://www.torayca.com/en/index.html.
  • Naito K, Tanaka Y, Yang JM, et al. Tensile properties of ultrahigh strength PAN-based, ultrahigh modulus pitch-based and high ductility pitch-based carbon fibers. Carbon. 2008;46:189–195.10.1016/j.carbon.2007.11.001
  • Zhao YX, Spain IL. X-ray diffraction data for graphite to 20 GPa. Phys Rev B. 1989;40(2):993–997.10.1103/PhysRevB.40.993
  • Savvatimskiy AI. Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003). Carbon. 2005;43(6):1115–1142.10.1016/j.carbon.2004.12.027
  • Hatta H, Goto K, Aoki T. Strengths of C/C composites under tensile, shear, and compressive loading: role of interfacial shear strength. Compos Sci Technol. 2005;65:2550–2562.10.1016/j.compscitech.2005.07.012
  • Hatta H, Aoi T, Kawahara I, et al. Tensile strength of carbon/carbon composites. JSME Int J Ser A. 2003;46(3):290–296.10.1299/jsmea.46.290
  • Manocha LM. High performance carbon–carbon composites. Sadhana. 2003;28(1–2):349–358.10.1007/BF02717143
  • Blanco C, Bermejo J, Marsh H, et al. Chemical and physical properties of carbon as related to brake performance. Wear. 1997;213:1–12.10.1016/S0043-1648(97)00221-4
  • Savage G. Carbon–carbon composites. London: Chapman & Hall; 1993.10.1007/978-94-011-1586-5
  • Sheehan JE, Buesking KW, Sullivan BJ. Carbon–carbon composites. Annu Rev Mater Sci. 1994;24:19–44.10.1146/annurev.ms.24.080194.000315
  • Fitzer E., Manocha LM. Carbon reinforcements and carbon/carbon composites. Springer; 1998.10.1007/978-3-642-58745-0
  • Koyanagi J, Hatta H, Kotani M, et al. A comprehensive model for determining tensile strengths of various unidirectional composites. J Compos Mater. 2009;43(18):1901–1914.10.1177/0021998309341847
  • Kogo Y, Kikkawa A, Saito W, et al. Comparative study on tensile fracture behavior of monofilament and bundle C/C composites. Composites Part A. 2006;37:2241–2247.10.1016/j.compositesa.2005.12.015
  • Kogo Y, Sumiya R, Hatta H, et al. Examination of strength-controlling factors in C/C composites using bundle composites. Adv Compos Mater. 2003;12(2–3):139–154.10.1163/156855103772658524
  • Nakanishi Y, Ikuta N. Interphase of FRP and its chemical control. J Sci Mater Sci. Japan. 1996;45(12):1307–1315.
  • Mujin S, Baorong H, Yisheng W, et al. The surface of carbon fibres continuously treated by cold plasma. Compos Sci Technol. 1989;34:353–364.10.1016/0266-3538(89)90004-3
  • Yasuda E, Suzuki Y, Inoue Y, et al. Microstructural change of pitch derived carbon matrix in C/C composite by ozone treatment on carbon fiber. Tanso, Japan. 1995;1995:247–254.10.7209/tanso.1995.247
  • Tsuji I, Ohkubo Y, Ogawa K. Study on super-hydrophobic and oleophobic surfaces prepared by the chemical adsorption technique. J Surf Finish Soc Jpn. 2008;59(7):460–464.10.4139/sfj.59.460
  • Pham TN, Yum YJ. Mechanical properties of the interface of gelcoat resin–composite materials and improvements via surface treatment methods. Adv Compos Mater. 2016;25(1):59–72.10.1080/09243046.2014.996958
  • Nam TH, Ogihara S, Kobayashi S, et al. Effects of surface treatment on mechanical and thermal properties of jute fabric-reinforced poly(butylene succinate) biodegradable composites. Adv Compos Mater. 2015;24(2):161–178.
  • Kwon DJ, Wang ZJ, Choi JY, et al. To improve interfacial and mechanical properties of carbon fiber–modified nano-SiC–epoxy composites using dispersion and wetting control. Adv Compos Mater. 2015;24(1):1–12.10.1080/09243046.2014.975928
  • Koyanagi J, Ogihara S, Nakatani H, et al Mechanical properties of fiber/matrix interface in polymer matrix composites. Adv Compos Mater. 2014;23(5–6): Special Issue: 18th Composites Durability Workshop, 551–570.10.1080/09243046.2014.915125
  • Koyanagi J, Nakatani H, Ogihara S. Comparison of glass–epoxy interface strengths examined by cruciform specimen and single-fiber pull-out tests under combined stress state. Composites Part A. 2012;43(11):1819–1827.10.1016/j.compositesa.2012.06.018
  • Koyanagi J, Yoshimura A, Kawada H, et al. A numerical simulation of time-dependent interface failure under shear and compressive loads in single-fiber composites. Appl Compos Mater. 2010;17(1):31–41.10.1007/s10443-009-9118-2
  • Koyanagi J, Sato Y, Sasayama T, et al. Numerical simulation of strain-rate dependent transition of transverse tensile failure mode in fiber-reinforced composites. Composites Part A. 2014;56:136–142.10.1016/j.compositesa.2013.10.002
  • Awasthi AP, Lagoudas DC, Hammerand DC. Modeling of graphene–polymer interfacial mechanical behavior using molecular dynamics. Modell Simul Mater Sci Eng, 2009;17:015002( 37 pp).
  • Li C, Browning AR, Christensen S, et al. Atomistic simulations on multilayer graphene reinforced epoxy composites. Composites Part A. 2012;43:1293–1300.10.1016/j.compositesa.2012.02.015
  • Rahman R, Haque A. Molecular modeling of crosslinked graphene–epoxy nanocomposites for characterization of elastic constants and interfacial properties. Composites Part B. 2013;54:353–364.10.1016/j.compositesb.2013.05.034
  • Iwasaki T, Miura H. Molecular dynamics analysis of adhesion strength of interfaces between thin films. J Mater Res. 2001;16(6):1789–1794.
  • Hare EF, Shafrin EG, Zisman WA. Properties of films of adsorbed fluorinated acids. J Phys Chem. 1954;58(3):236–239.10.1021/j150513a011
  • Iriyama Y, Yasuda H. Fundamental aspect and behavior of saturated fluorocarbons in glow discharge in absence of potential source of hydrogen. J Polym Sci Part A. 1992;30:1731–1739.
  • Nishino T, Meguro M, Nakamae K, et al. The lowest surface free energy based on −CF 3 alignment. Langmuir. 1999;15:4321–4323.10.1021/la981727s
  • Chong YB, Ohara H, Watanabe N. Surface modification of pitch based carbon fibers by direct fluorination comparison with anodic oxidation. Sen’i Gakkaishi Jpn. 1993;49(3):111–116.10.2115/fiber.49.3_111
  • Izumi A, Nakao T, Shibayama M. Atomistic molecular dynamics study of cross-linked phenolic resins. Soft Matter. 2012;8:5283–5292.10.1039/c2sm25067e
  • Mayo SL, Olafson BD, Goddard WA III. DREIDING: a generic force field for molecular simulations. J Phys Chem. 1990;94:8897–8909.10.1021/j100389a010
  • Wu C, Xu W. Atomistic molecular modelling of crosslinked epoxy resin. Polymer. 2006;47:6004–6009.10.1016/j.polymer.2006.06.025
  • Li C, Strachan A. Molecular simulations of crosslinking process of thermosetting polymers. Polymer. 2010;51:6058–6070.10.1016/j.polymer.2010.10.033

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.