361
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of hybrid neutralization/biosorption process for zinc ions removal from automotive battery effluent by dolomite and fish scales

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2373-2388 | Received 31 Aug 2017, Accepted 11 Feb 2018, Published online: 26 Feb 2018
 

ABSTRACT

This work focused in the evaluation of Oreochromis niloticus fish scales (FS) as biosorbent material in the removal of Zn from a synthetic effluent based on automotive battery industry effluent and, further, a hybrid neutralization/biosorption process, aiming at a high-quality treated effluent, by a cooperative use of dolomite and FS. For this, a physicochemical and morphological characterization (i.e. SEM–EDX, FTIR, XRD, and TXRF) was performed, which helped to clarify a great heterogeneity of active sites (phosphate, carbonate, amide, and hydroxyl) on the biosorbent; also the inorganic constituents (apatites) leaching from the FS was identified. Biosorption results pointed out to a pH-dependent process due to changes in the functional group’s anionic character (i.e. electrostatic interactions), where an initial pH = 3 favored the Zn uptake. Kinetic and equilibrium studies confirmed the heterogeneous surface and cooperative sorption, wherein experimental data were described by Generalized Elovich kinetic model and the favorable isotherm profile by Langmuir–Freundlich isotherm (qmax = 15.38 mg g–1 and 1/n>1). Speciation diagram of Zn species along with the leached species demonstrated that, for the studied pH range, the biosorption was the most likely phenomena rather than precipitation. Finally, the hybrid neutralization/biosorption process showed great potential since both the Zn concentration levels and the pH reached the legislation standards (CZn = 4 mg L–1; pH = 5). Hence, based on the characterization and biosorption results, a comprehensive evaluation of the involved mechanisms in such complex system helped to verify the prospective of FS biosorbent for the Zn treatment from solution, in both individual and hybrid processes.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors are thankful to the National Council for Scientific and Technological Development [Conselho Nacional de Desenvolvimento Científico e Tecnológico] (CNPq) for the financial support of this study [grant number 480107/2013-0].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.